
T h e m e l i o : a n e w p a r a d i g m

f o r d e c e n t r a l i z i n g t h e

I n t e r n e t

Themelio Labs

Version 1.1

CON TEN TS

1 introduction 5
1.1 A “blockchain revolution”? 5

1.1.1 The promise of blockchains 5
1.1.2 Where are all the blockchain apps? 6

1.2 What’s wrong with blockchains? 7
1.2.1 Attempts at better blockchains 7
1.2.2 Are blockchains stuck? 8
1.2.3 The crux: endogenous trust 8
1.2.4 Weak endogenous trust in existing block-

chains 9
1.3 Towards a new paradigm 11

1.3.1 A minimal blockchain 11
1.3.2 Building a rich ecosystem 12

2 themelio: a minimal blockchain 15
2.1 Design goals 15

2.1.1 Goals 15
2.2 A robust transaction model 16

2.2.1 Coin-based transactions 16
2.2.2 Why coins? 18
2.2.3 Covenant scripting with MelScript 19
2.2.4 Coin-oriented interface 21

2.3 Consensus and trust 22
2.3.1 Oligarchy with a free press 22
2.3.2 Stakeholders: the oligarchy 23
2.3.3 Auditors: the free press 27
2.3.4 Clients: thin yet fully secure 29

2.4 Cryptocurrency and economics 31
2.4.1 Mel: an endogenous stablecoin 31
2.4.2 Better transaction fees 32

3 applications and protocols 35
3.1 Astramel: scalable payments 35
3.2 Conifer and Bitforest: trust-minimizing naming 36
3.3 Token systems 37
3.4 Autonomous applications 37
3.5 Trustless private blockchains 38

3

1
I N TRODUCT ION

1.1 a “blockchain revolution”?

1.1.1 The promise of blockchains

Trust on the Internet is a rare commodity. Participants are often
anonymous, and communication is inherently insecure. Everyone is
at most a few hundred milliseconds away from potential attackers.

Generally, to trust someone on the internet you either know them
in real life or depend on trusted third-party intermediaries. How-
ever, real-world knowledge is extremely rare on the Internet, while
intermediaries (such as certificate authorities, lookup servers, and
notaries) are almost always centralized institutions. Unfortunately,
central points of trust are often single points of failure. Compromised
root CAs lead to catastrophic meltdowns of the basic cryptography
of the encrypted Web [20]. Poisoned DNS servers enable defacings of
high-profile websites. Hacked update servers can instantly distribute
malware to enormous numbers of unsuspecting computers, crippling
critical systems [22].

Moreover, centralized control of the “commanding heights” of our
modern interconnected society lends a disproportionate amount of
power to a small oligarchy of service providers. This enables a wide
range of abuse with devastating real-world consequences. For instance,
centralized social media platforms insidiously manipulate and censor
user communication [24]. As another example, governments build
Orwellian surveillance systems like the prototype Chinese “social
credit” system [27] by aggregating massive amounts of data from
centralized sources.

In the face of these numerous perils of centralization on the Inter-
net, blockchains offer an attractive alternative. Public blockchains like
Bitcoin [18] and Ethereum [28] are unforgeable, append-only ledgers
accessible to all. They provide secure, transparent, and permanent
records of transactions while being completely decentralized. Instead
of relying on unaccountable centralized entities, applications such
as public key infrastructures, document timestamping services, and
electronic money can now use this shared ledger to guarantee secu-
rity. Blockchains promise a revolution to end reliance on dangerously
fragile central trusted entities.

5

6 introduction

1.1.2 Where are all the blockchain apps?

Yet despite all the hype of a blockchain revolution, almost no produc-
tion systems use public blockchains. Naming even a single user-facing
application using a public blockchain is astonishingly difficult — ex-
cept for, of course, cryptocurrency trading apps, blockchain viewers,
and other such blockchain-centered software. Why?

Simply put, this is because public blockchains are not good enough.
Firstly, Nakamoto consensus — the very innovation that gives public
blockchains their robust decentralized consensus — saddles users with
onerous costs. Take Bitcoin as an example: users must synchronize and
store the blockchain’s entire transaction history, which is hundreds of
gigabytes and growing. On top of that, users must wait hours for a
transaction to become irreversible when the network is a bit slow.

Furthermore, public blockchains can be quite unreliable. Wildly
fluctuating cryptocurrency prices create significant currency risk, con-
gestion leads to spikes in transaction fees, and network problems cause
long delays. None of these shortcomings are acceptable in modern
production systems. Finally, public blockchains by nature require
unanimous agreement on the blockchain protocol. Therefore, protocol
upgrades are almost always disruptive and contentious — every tiny
change can shake the whole blockchain ecosystem. Nobody wants to
build applications on a foundation that threatens their products’ basic
integrity with every update.

Unsurprisingly, blockchains have failed to truly revolutionize the
software industry. Instead, their impact is mostly limited to inspir-
ing a breed of centralized databases with the catchy label of “private
blockchains”. Although private blockchains, like those based on Hy-
perledger Fabric [5], use append-only distributed ledgers similar to
those of public blockchains, they’re generally deployed within an
environment isolated from public access, such as across a corporate
WAN or even inside a single datacenter. Enterprise applications, such
as supply-chain tracking or processing business payments, have an
especially strong tendency towards using private blockchains.

Unlike their public counterparts, private blockchains promise per-
formance and reliability comparable with traditional databases. For
this reason, private blockchains have been adopted by a wide variety
of production systems, ranging from the SecureKey identity service
[23] to Estonian government systems [12]. “Blockchain for business”
is currently almost synonymous with a blockchain within a private,
controlled environment.

However, private blockchains by definition give up much of the
security, transparency, and decentralization of public blockchains. The
majority of proposed deployments, such as those within a single data-
center, almost entirely abandon the promised paradigm shift towards
decentralization. Because private blockchains sacrifice decentraliza-

1.2 what’s wrong with blockchains? 7

tion in pursuit of maximal usability, they are useless in bringing about
a more decentralized Internet.

1.2 what’s wrong with blockchains?

1.2.1 Attempts at better blockchains

Many projects attempt to build better blockchains. However, a large
number of these propose something categorically different from trust-
less public blockchains, thus losing sight of the essence of blockchains
in pursuit of optimization. Here are two examples.

One fairly obvious idea is to compromise between private and public
blockchains to get the best of both worlds. “Consortium” blockchains
— blockchains where participation is limited to a small number of
trusted partners — are a good example. This includes Quorum [21], an
Ethereum-based consortium blockchain designed to be deployed in en-
terprise backend services and Corda [6], which is designed to provide
business-to-business secure transactions. Consortium blockchains
may also support public access, though not universal participation in
the consensus protocol. Some blockchains, like EOS, even elect the
consortium from the wider public.

Limiting the number of consensus participants typically improves
performance and reliability simply because the data needs to be repli-
cated dramatically fewer times (this is the same reason why private
blockchains are superior in these aspects). Unfortunately, “hybrid”
blockchains retain most of the problems of either public or private
blockchains. Those that deliver reliable performance and agile up-
dates end up with the poor security and inadequate decentralization of
private blockchains. Others that emphasize security inherit the poor
performance and inflexibility of public blockchains. Ultimately, retain-
ing decentralized trust requires wide-scale consensus, while reducing
the overhead of consensus necessarily translates into diminished se-
curity and neutrality.

A second approach is altogether abandoning the model of a uni-
fied, trustless append-only log. This includes “sharded” designs for
blockchains, such as Omniledger [17], and non-blockchain ledgers
like Ripple [1] and Hashgraph [2]. Though forgoing the requirement
for a universally replicated log eliminates most scalability challenges,
it introduces far greater complexity in both the implementation and
application interfaces. This only exacerbates the already daunting
difficulty in developing applications on blockchains. In fact, none of
these “unconventional” distributed ledgers have achieved much pro-
duction success. After all, distributed consensus protocols have existed
for decades. It is precisely the simple yet expressive abstraction of a
linear blockchain that has fascinated the world, yet unconventional
“blockchains” have chosen to throw it away.

8 introduction

1.2.2 Are blockchains stuck?

The very existence of multiple “non-blockchain” attempts to fix block-
chains hints that public blockchains as conventionally conceived have
fundamental problems. Indeed, current blockchains encounter three
significant problem areas:

1. Horizontal scalability: Global replication and consensus, which
are fundamental to the desired blockchain properties, pose se-
vere information-theoretical limits on scaling horizontally. De-
centralized apps running on blockchains are already running
into this problem, whichmanifests as expensive and variable fees
and poor reliability. Even private and consortium blockchains
typically cannot compete with the performance of traditional
centralized services.

2. Governance: Implementing protocol changes in public block-
chains has proven to be fiendishly difficult “political” decisions.
They involve much controversy and fail to come to satisfactory
results even for simple changes like that of Bitcoin’s block size
limit.

3. Usability: Blockchains tend to be “leaky” abstractions, requiring
developers of blockchain applications to understand low-level
details such as block reorganizations and transaction fee auc-
tions. This causes usability problems throughout blockchain
applications and often forces end users to deal with the block-
chain’s technical problems.

All three problems appear somewhat inherent to the blockchain
design and therefore difficult to remedy. Distributed consensus is
by nature hard to scale; permissionless blockchains do not have any
authority that can “govern” the protocol; blockchains have peculiar
characteristics, like Nakamoto consensus, that make usable abstrac-
tions hard to build.

Much work has already been done on incrementally attacking these
daunting problems, but the issues cannot be wholly eliminated by
localized optimization. These problems are symptoms of a more fun-
damental issue in the very way blockchains are used and designed.

1.2.3 The crux: endogenous trust

We cannot build a better blockchain without understanding what ex-
actly makes blockchains unique. Despite their popularity, many of
blockchains’ widely-touted features are also found in other systems.
For example, decentralization is often proclaimed as a key asset of
blockchains, but many existing systems have decentralized gover-
nance without a central trusted party. This includes DHTs, email, the

1.2 what’s wrong with blockchains? 9

PGP web of trust, and even the Internet itself. Transparency is another
commonly-cited advantage of blockchains, yet many non-blockchain
protocols like Certificate Transparency and Keybase also use trans-
parency as a key part of their security. Thus, neither decentralization
nor transparency constitutes the essence of blockchains.

Instead, the crucial feature that distinguishes blockchains from all
preexisting protocols is endogenous trust. That is, we can trust that
a blockchain protocol will behave in a certain way with minimal
assumptions about who runs it. In blockchains, trust emerges from
within the protocol, not from preexisting trust in the parties that
run the protocol. Crucial to endogenous trust is cryptoeconomics,
the intersection of game theory and cryptography that enables the
formal design of self-incentivizing mechanisms so that given enough
participants, we can trust the group’s overall behavior without trusting
any individual participant.

Endogenous trust is the single most precious property of block-
chains that enables secure applications with properties elusive to
pre-blockchain systems. For example, someone using a bank must
trust the bank no matter what form of communication protocol is used,
yet a Bitcoin user does not need to even know which miner ends up
processing their transaction, let alone establish some sort of trust with
that miner. Instead, the cryptoeconomics of Bitcoin mining internally
incentivize miners to cooperate in such a way that makes the Bitcoin
protocol as a whole trustworthy.

Many blockchain failures can, in fact, be analyzed as failures in
endogenous trust. Contentious governance problems like the Bitcoin
block-size controversy of 2017 or the “DAO fork” that split Ethereum
into Ethereum and Ethereum Classic arise when external factors incen-
tivize users to override a blockchain’s endogenous trust mechanism.
Poor internal incentives cause out-of-band coordination to become
necessary to prevent game-theoretical issues like “SPV mining” in
Bitcoin. Even volatile cryptocurrency prices can be analyzed as a lack
of an endogenously trustworthy store of value, forcing users to reach
for fiat-pegged stablecoins that altogether forgo endogenous trust. In
fact, the Ethereum-based DeFi (decentralized finance) market is quite
heavily reliant on financial instruments denominated in fiat-pegged
tokens like Dai, USDC, and Tether.

Regretfully, the frequency of failure reveals that, in reality, endoge-
nous trust in blockchains is very fragile and often subverted, despite
it being the soul of blockchains. Why is that so? An inspection of the
state of the art in blockchains reveals the reason.

1.2.4 Weak endogenous trust in existing blockchains

Blockchains nowadays can be roughly divided into two categories:

10 introduction

• Application blockchains are optimized for one particular appli-
cation. They often have adequate usability and performance at
the expense of adaptability to diverse usages. Examples include
Bitcoin Cash (higher throughput bitcoin), Filecoin (incentivized
peer-to-peer content distribution), and Zcash (untraceable pay-
ments).

• Platform blockchains attempt to provide the full set of fea-
tures needed to implement decentralized applications, typically
through Turing-complete “smart contracts”. Ethereum is the
archetypal Swiss army knife blockchain; newer examples in-
clude EOS and Tezos.

Yet both kinds of blockchains fail at providing strong endogenous
trust. This is due to two common problems.

First, weak cryptoeconomics often undermine incentive structures
intended to secure the blockchain endogenously and force the com-
munity to resort to out-of-band coordination to keep the ledger se-
cure. Unpredictable social processes such as Bitcoin’s coordination
surrounding SPV mining and EOS’s node elections all result from a
lack of built-in incentives nudging participants towards secure be-
havior. Both application and platform blockchains suffer from poorly
designed cryptoeconomic incentives, especially the latter due to their
more complex protocols.

The second, and perhaps more important, cause of poor endogenous
trust is application-blockchain friction. Application-blockchain friction
occurs when a blockchain protocol becomes increasingly unsuitable
for its main application. When this happens, the blockchain loses
its users’ confidence. This forces a contentious out-of-band protocol
upgrade to prevent the blockchain from passing into the dustbin of
history. The Bitcoin block-size controversy is the most well-known
case of loss of trust from application-blockchain friction — unsurpris-
ing given Bitcoin’s rigid coupling of its core payment application to
its blockchain.

Unfortunately, general-purpose blockchains like Ethereum experi-
ence evenmore challenges to their endogenous trust due to application-
blockchain friction. As we have seen in the previous section, most of
the protocol upgrades to Ethereum so far involved fairly minor tweaks
to functionality in order to support newly emerging, unanticipated
applications.

The prevalence of application-blockchain friction is because both
application blockchains (like Bitcoin) and platform blockchains (such
as Ethereum) are are on the wrong protocol layer. Both are too close to
applications.

Platform blockchains like Ethereum sit directly underneath applica-
tions to allow apps’ easy deployment — a new cryptocurrency can be
implemented on Ethereum in a few dozen lines of code. Such a direct

1.3 towards a new paradigm 11

interface between application and blockchain, however, inevitably
results in contention between ever-changing application requirements
and ideally immutable blockchain protocols. The situation is anal-
ogous to telecommunication networks before the Internet, where a
vertically integrated system directly offered relatively high-level func-
tions like voice calling and teletype. Like Ethereum, these complex
platforms were extremely costly to upgrade when they were forced to
change by the rise of new applications and technological advances.

Learning from these previous mistakes, it is clear that a blockchain
with endogenous trust must be built upon a solid cryptoeconomic
foundation. This ensures that its core security properties will require
no out-of-band social coordination to uphold. More importantly, it
must also minimize application-blockchain friction by using a protocol
analogous to the Internet Protocol — a minimal, low-level protocol
with straightforward semantics. This allows easily upgradable “mid-
dleware” protocols to separate the blockchain from the ever-changing
needs of applications. Thus, the blockchain can remain an embedded
“endogenous trust engine” for decades without changing.

1.3 towards a new paradigm

1.3.1 A minimal blockchain

This points us towards a new blockchain paradigm — a minimal block-
chain acting as a bare-bones root-of-trust infrastructure for supporting
endogenous trust in decentralized applications. Essentially all other
concerns would be subordinated to these two goals.

Current blockchains, as a matter of fact, are very far from the ideal
root of trust. Thus, a minimal blockchain design needs to sharply
diverge with existing blockchains in the following ways:

• Minimal governance: The protocol should be as simple and ro-
bust as possible to simply obviate the need for ongoing protocol
changes. Deeply embedded infrastructure, such as the Internet
Protocol, tend to only be useful if reasonably “timeless”. This
is essentially a stronger version of “Szabo’s Law” (“blockchains
should not be changed for non-technical reasons”), extended
even to technical concerns. Current blockchains, on the other
hand, regularly introduce consensus-breaking protocol changes,
especially complex platform blockchains like Ethereum.

• Vertical scalability: We intentionally avoid pursuing sharding
and other horizontal scaling strategies, as they must provide
a less consistent data model due to the CAP theorem [3], yet
some applications, like censorship-resistant publication, need
a strongly consistent broadcast channel. Instead, we want a
blockchain that effortlessly scales throughput with increasing

12 introduction

per-node computational capacity, while supporting fully secure
“thin” clients and layer-2 strategies such as state channels to
allow essentially indefinite scale for applications like payments
that do not require global consistency. This is in sharp con-
trast to present blockchains, where ever-more-subtle shades
of eventual consistency are used to support horizontal scaling,
protocols treat thin clients as second-class citizens, and most
applications are embedded directly in the blockchain state.

• Cryptoeconomic robustness: To maximize endogenous trust,
we want a blockchain designed with conservative cryptoeco-
nomic assumptions that work without intervention in a wide
variety of environments. This is, again, often neglected in cur-
rent blockchain designs, especially newer projects focused on
the putative scalability, governance, or usability issues.

• Simple abstractions: Finally, we always choose simple, easy-
to-understand abstractions over potentially more powerful but
“leakier” ones. For example, we certainly wish to avoid the
highly counterintuitive behavior of Nakamoto consensus.

All of these goals attack systemically infectious problems in current
blockchains when used as a root of trust. No amount of abstraction
can protect applications and end users from interventionist gover-
nance, sharding-related data inconsistency, cryptoeconomic attacks,
and leaky abstractions, all of which can be traced to the application/-
platform dichotomy and poor endogenous trust. On the other hand, a
minimal blockchain that aggressively attacks these systemic problems
allows easy encapsulation with well-designed abstractions that hide
technical details.

A minimal blockchain, rather than looking like an application or
platform, takes inspiration from the technology underpinning most of
modern telecommunication: the Internet Protocol (IP). IP gets packets
on a best-effort basis from point A to point B, and nothing more. Un-
reliable datagrams don’t make a developer-friendly interface, but they
do provide a firm foundation for ever-changing application protocol
stacks. IP is a great illustration of a successful foundational technology.
Such protocols are often too simple to support rich applications with-
out intervening protocol stacks, but they are easy to conceptualize,
simple to implement, and brutally robust. It is precisely this simplicity
that allows it to support the dazzling variety of Internet applications
today with practically no changes since the IPv4 specification’s publi-
cation in 1981.

1.3.2 Building a rich ecosystem

One disadvantage of aminimal blockchain is that it would be difficult to
use directly, as it would lack many features developers take for granted,

1.3 towards a new paradigm 13

such as a powerful smart-contract system. A minimal blockchain only
makes sense within the context of a richly layered ecosystem, with
many abstraction tools available to application developers. Unlike a
monolithic platform blockchain, such an ecosystem would be able to
rapidly evolve without compromising the blockchain’s immutability.

A decentralized-trust ecosystem of applications in this new model
can roughly be divided into three layers:

• Themelio, a minimal blockchain providing endogenous trust to
the entire ecosystem

• Themelio standard protocols providing standardization for
“middleware” constructs such as state channels, a global naming
system, etc that are not hard-coded into the blockchain and may
evolve over time

• Applications leveraging the Themelio infrastructure to achieve
security and decentralization properties impossible without
blockchains.

Themelio and its upper-layer protocols concretely instantiate the
concept of a minimal blockchain supporting a layered ecosystem.
In the process, we investigate and answer three important research
questions corresponding to the three divisions above:

• What is the optimal minimal blockchain? It seems clear that
blockchains should be pushed further away from the applica-
tion, but what should be the division of functionality between
the blockchain and upper-layer protocols? Simply removing
“messy” features from existing blockchains will not do, as their
entire architecture has not been designed with our paradigm in
mind. Exploration of this question motivated many innovative
design choices in Themelio.

• How to build a “blockchain-minimizing” trustless protocol suite?
Except for a few specific “off-chain” applications such as state
channels and cross-chain transfers, research in algorithmic-trust
(“trustless”) protocols, like decentralized naming systems or DeFi
lending protocols, have largely assumed a blockchain-embedded
or similar environment. We need to design network protocols
which use our minimal blockchain to provide critical security
guarantee, yet “live” largely outside the blockchain to maximize
scalability and flexibility.

• What do applications in such a paradigm look like? Finally, we
explore specific user-facing applications built in this sort of
paradigm. We will see that such applications can be exception-
ally user-friendly and reliable compared to current blockchain-
based applications, while avoiding the governance and security
problems inherent with traditional centralized-trust apps.

2
THEMEL IO : A M IN IMAL BLOCKCHA IN

In this chapter, the details of Themelio are laid out. Instead of a
specific decentralized application or a “Swiss army knife” runtime
environment, Themelio provides a minimal root of trust. Themelio
sits at the bottom of diverse evolving protocol stacks, providing a
foundation of endogenous trust and logically centralized consensus —
but not much else.

But how are we to build such a blockchain? We combine an elegant,
time-tested application interface — a “coin-based” transaction graph
like that of Bitcoin — with numerous innovations under the hood.
Consensus, based on proof of stake, is immediate, scalable, and highly
secure. Cryptocurrency is issued in a completely decentralized manner,
yet remains immune to bubbles that destabilize the exchange rate. A
simple yet expressive scripting language allows developing advanced
decentralized apps without the problems associated with stateful smart
contracts. These are some of the many features we use to maximize
robustness and performance.

2.1 design goals

Let’s first examine what we want to accomplish, and what we don’t.

2.1.1 Goals

Our overarching goal leads us to design Themelio according to these
principles:

1. Simple abstractions: Themelio should present simple, “non-
leaking” abstractions. Programmers without much experience
with blockchains should be able to easily understand the fea-
tures and behavior of the Themelio blockchain. We try our very
best to avoid forcing users to consider subtle edge cases. For
example, we must avoid many blockchains’ unintuitive behav-
ior in the presence of network latency (“confirmations”, forks,
reorganizations).

2. Stable protocol: An initial period of rapid evolution is in-
evitable. But once mature, Themelio’s internals should change
as little as possible. Protocol stability avoids dangerous and
messy consensus-breaking updates. Even though many block-
chains envision constant protocol evolution, this introduces
difficult out-of-band coordination problems — otherwise known

15

16 themelio: a minimal blockchain

as politics. This can easily lead to de-facto centralization, con-
tentious forks, and subversion by special interests. In Themelio,
consensus-breaking changes will be made only in exceptional,
non-controversial circumstances, such as to fix critical security
vulnerabilities.

3. Currency stability: Themelio’s cryptocurrency, the mel, is de-
signed to have very low price volatility. It avoids large price
increases, even with spikes in demand. The mel is designed to
be a good unit of account and store of value, not a speculative
asset exciting to “HODL” (“hold on for dear life”).

4. High performance: Themelio’s performance must be much
higher than existing public blockchains. This means both high
transaction throughput and scalability in the number of fully
secure clients. Decentralized apps with debilitatingly poor per-
formance cannot take over the world.

5. Application neutrality: Themelio should not attempt to prevent
or censor any categories of applications. It does not have an
“intended use”.

6. Robust decentralization: The ideal public blockchain must sim-
ulate a universally trusted intermediary — decentralization is a
must. Themelio is designed to decentralize trust across as large a
population of stakeholders as possible. No unaccountable third
parties, including network operators, should be able to subvert
its security guarantees.

2.2 a robust transaction model

We start with a conceptual exploration of Themelio’s high-level trans-
action model: the abstractions on the blockchain that applications
interact with.

2.2.1 Coin-based transactions

Themelio’s basic transaction model belongs to a family usually known
as “UTXO-based” or “coin-based” models. This is the oldest family of
blockchain models, including first-generation blockchains like Bitcoin
and Litecoin. In a coin-based model, the blockchain can be understood
as a grow-only directed acyclic graph (DAG) of transactions. Every
transaction on the blockchain takes as input and spends one or more
unspent transaction outputs (UTXOs) of previous transactions, which
are informally known as coins. It then produces as output one or more
coins that can be spent as input by subsequent transactions.

Every coin represents a given amount of cryptocurrency, known
as its value, and it includes an unlock constraint, or using Themelio’s

2.2 a robust transaction model 17

Figure 1: Coin-based transactions in Bitcoin

terminology a covenant, that specifies what sort of transaction can
spend the coin. Each coin can only be spent once. Excepting trans-
actions that “mine” more currency, the sum of the values of all the
coins spent by a transaction must equal the sum of the values of all
the coins created by it.

Let’s illustrate how coin-based transactions work with a simple
example. Assume there are 5 coins identified as 𝐵1, … , 𝐵5, each worth
$1, and each having a covenant specifying “any transaction that spends
me must have Bob’s signature”. Informally, we say that Bob owns 5
coins, each one worth $1. Bob “owning” a coin simply means Bob
knowing how to unlock the coin’s covenant.

Now, assume that Bob wants to send his friend Alice $2.5. He creates
a new transaction spending 𝐵1, 𝐵2, 𝐵3 as input, with two outputs:

• 𝐴1 with value $2.5 and a covenant requiring Alice’s signature.

• 𝐵6 with value $0.5 and a covenant requiring Bob’s signature.

and informs Alice about 𝐴1. Bob now “owns” 𝐵4, 𝐵5, 𝐵6 with a total
value of $2.5, and Alice owns 𝐴1 with a total value of $2.5, just as
we wanted. Note that Bob had to give himself a new coin for the
transaction to balance; this new coin is known as a change output.
Figure 1 from bitcoin.org shows a complex series of interdependent
coin-based transactions.

Transactions are batched into an ever-growing series of blocks, each
one containing transactions settled in a particular time period. Trans-
actions within a block have no defined order — the block that a trans-
action belongs to is the smallest unit of time on the blockchain. Finally,

18 themelio: a minimal blockchain

blocks are guaranteed to be consistent 1, so all users of the blockchain
see the same blocks and the same transaction DAG.

2.2.2 Why coins?

In Themelio, we use coin-based transactions with a cryptocurrency
that we call the mel. We believe that a model of interdependent trans-
actions spending and producing coins, though originally invented only
for modeling money transfers, is a very good abstraction on which
decentralized-trust applications can be built.

But coin-based models are not popular at all among general-purpose
blockchains. Most blockchains attempting to support general decen-
tralized apps use account and smart-contract based models. In these
models, accounts directly map to sums of money that can be trans-
ferred and accounts can have automatically executing code attached.
In fact, the only general-purpose blockchain we know of that uses a
coin-based model is Qtum[7]. Even there, an “Account Abstraction
Layer” simulates Ethereum-like accounts to run smart contracts. Why
do we believe coins are the way to go?

First of all, coins allow Themelio to process transactions quickly. In
an account-based model, like in Ethereum or traditional banking, strict
global transaction ordering is necessary. Yet coin-based transactions
can be processed in any topological order — we simply need to process
the transaction that produces a coin before the transaction that spends
it. Transactions within a block can be validated mostly in parallel.
This greatly increases performance.

Secondly, a coin-based architecture simplifies state transitions.
Blockchain protocols can be thought of as state-transition functions,
where each transaction takes in the “world” in a certain state (say, Bob
having $5 and Alice $0) and outputs a different state (Alice and Bob
both having $2.5). On the other hand, to support functionality beyond
basic payments, account-based blockchains like Ethereum need arbi-
trarily mutable global state, accessed by user-programmable “smart
contracts”. However, programming decentralized apps with mutable
state is notoriously prone to error. Complex state transitions are as-
sociated with difficult-to-find bugs and blockchain-level performance
problems. In a coin-based blockchain, state is extremely simple: the
set of all unspent coins. All transitions simply correspond to individual
transactions deleting and adding coins atomically, with covenants that
only allow valid states. This leads to clearer logic in decentralized
apps and faster performance.

Finally, coin-based transactions are surprisingly expressive. A very
large class of security-critical problems boil down to establishing a

1 Consistency isn’t guaranteed in traditional proof of work blockchains like Bitcoin,
but Themelio guarantees immediate, permanent consistency. This is because we use
a Byzantine fault-tolerant consensus algorithm, as we will discuss in 2.3

2.2 a robust transaction model 19

consistent graph of interdependent events that satisfies some sort of
invariant. For example, in a naming system, a successful name transfer
depends on previous events like the previous owner relinquishing
control, that owner first registering the name, and so forth. Centralized
roots of trust, like notaries, certificate authorities, and banks, almost
always serve the role of ensuring consistency of an event graph. In a
coin-based blockchain model, the transaction DAG maps extremely
well to these event graphs — events correspond to transactions, and
invariants to covenants. This means it’s easy to write decentralized
apps that replicate centralized authorities on Themelio’s coin-based
model.

However, traditional coin-based architectures exactly like Bitcoin
clearly cannot support a wide variety of decentralized apps. Otherwise,
why would anybody use other blockchains? Themelio refines the
traditional coin-based model with two significant changes: expressive
covenant scripting and a coin-oriented application interface. The former
allows programs representing far more than mere “ownership” to
constrain coin spending. The latter makes it much easier to write
high-performance decentralized apps. Let’s now examine these two
innovative features of Themelio’s transaction model.

2.2.3 Covenant scripting with MelScript

Themelio allows users to write very complex covenants with a pow-
erful scripting language, MelScript. Unlike Bitcoin unlock scripts,
MelScript can place conditions on any part of the transaction attempt-
ing to spend a coin and enables easy development of a wide variety of
decentralized apps. Yet unlike Ethereum’s EVM, MelScript is Turing-
incomplete and has no access to persistent state, eliminating a large
class of “smart contract” bugs.

MelScript is written in a Lua-like syntax and compiled to a stack-
based bytecode, MelVM, to be embedded in transaction outputs. Sim-
ple, Bitcoin-like covenants are straightforward. For example, the
following is MelScript for a “multisignature” covenants, for coins re-
quiring signatures from both ALICE_KEY and BOB_KEY to be spent:

is_sig_correct(env::SPEND_TX, ALICE_KEY) and

is_sig_correct(env::SPEND_TX, BOB_KEY)

We can also access certain facts about the blockchain external to
the transaction attempting to spend a coin. For example, the following
covenants, which can’t be expressed in Bitcoin’s simplistic covenants
language, gives ownership of a coin to Alice if the total number of
transactions exceeds a million before the 10,000th block, and Bob
otherwise. It can be used as a simple bet between Alice and Bob on
Themelio’s future adoption:

let stats = getStats()

20 themelio: a minimal blockchain

Figure 2: Example of a Catena log

if stats.transaction_count > 1000000 and

stats.block_height > 10000 then

is_sig_correct(env::SPEND_TX, ALICE_KEY)

else

is_sig_correct(env::SPEND_TX, BOB_KEY)

end

The most useful covenants in MelScript are not the simple filters
demonstrated above, but covenants that constrain covenants. This
allows us to embed a wide variety of decentralized, permissionless
secure data structures within the transaction graph, which we might
call coin structures.

This is confusing, so let’s illustrate the concept with an example.
Catena [26] is an append-only log originally implemented in Bitcoin.
The basic idea is simple: a central authority can transparently publish
a log of messages by building a transaction chain, each spending the
first output coin of the previous transaction. Since coins cannot be
spent twice, the authority cannot rewrite, reorder, or delete any log
entries after they are published. Figure 2 is an example of a Catena
log.

In Bitcoin and other existing coin-based blockchains, Catena logs
must be maintained by central authorities. Coins forming the chain
must be “owned” by the log publisher, lest someone spend them for
other purposes and ruin the log. This prevents the use of Catena in
applications without a central publisher. In Themelio, however, we
can easily write a covenant that only allows transactions that grow the
Catena chain to spend the coin. Any coin with the following covenant
is forced to be the start of a permissionless Catena chain that can never
be broken:

-- at least 1 output coin

-- first output constrained the same way

-- *SELF* is the coin in which this covenant is embedded

length(env::SPEND_TX.outputs) > 0 and

env::SPEND_TX.outpus[0].covhash == env::SELFHASH

2.2 a robust transaction model 21

Figure 3: Application interface of Bitcoin vs Themelio. Squares represent
transactions, while circles represent unspent coins.

Coin structures, of course, are not limited to simple logs. Bitforest
[9] builds an entire naming system out of a coin structure that im-
plements an equivocation-proof binary search tree, yet like Catena
it must rely on a centralized coin owner when deployed on existing
blockchains. AnalogousMelScript covenants can be used to implement
Bitforest on Themelio as an entirely decentralized and permission-
less naming system, with features comparable to naming systems on
“smart contract” blockchains, like the Ethereum Naming System (ENS).

2.2.4 Coin-oriented interface

The second innovation that sets Themelio apart from other blockchains
is its deeply coin-oriented application interface. Strange as it may seem,
existing coin-based blockchains don’t actually have coins explicitly
in the model that applications see. Instead, blockchain users have to
download the entire transaction history, building a transaction DAG
and working out which transactions spent which coins by themselves.
Without full blockchain access, it’s not even possible to securely obtain
simple facts like “what are the coins that I own”.

This means that in existing coin-based blockchains, even simple
applications like cryptocurrency wallets can’t be secure and scalable
at the same time. Either every user downloads the huge and grow-
ing transaction history, or a centralized server that does sync the
blockchain is trusted to provide users with information 2.

In Themelio, though, coins are first-class citizens. Participants
synchronize the coin state, not the entire blockchain history. History
older than a few weeks is not required to be stored by the protocol.
Sparse Merkle trees committing to data about the coin state allow thin
clients to securely obtain information about coins without trusting
anyone. Apps see the coin state as a secure database they can freely

2 This is true even with technologies like Bitcoin’s SPV that let clients verify claims
that a certain transaction exists. SPV is unable to defend against dishonest nodes that
hide coins or claim that spent coins are unspent, rendering basic wallet information
untrustworthy.

22 themelio: a minimal blockchain

query. Thus, coin-driven applications, ranging from simple wallets
to covenant-driven apps like Bitforest, can scale without needing any
centralized trust. Figure 3 shows the “worldview” of a Bitcoin node as
compared to a Themelio node.

2.3 consensus and trust

We now look at how nodes in Themelio come to agreement on the
status of the network — decentralized consensus, the foundation of
any public blockchain’s security. Themelio uses a variation of bonded
proof-of-stake found in systems such as Tendermint. This is augmented
with a novel “auditor” system which further decentralizes trust.

2.3.1 Oligarchy with a free press

Participants in Themelio are divided into three categories by their
roles:

• Stakeholder nodes record transactions into new blocks and
confirm them using a Byzantine fault-tolerant consensus al-
gorithm between themselves. They communicate with each
other through a broadcast protocol which other nodes in the
network never participate in. Anybody can become a stake-
holder by “staking” a cryptoasset. Stakeholders correspond to
miners or validators in other systems.

• Auditor nodes download newly created blocks from the stake-
holders and gossip them between themselves while storing a
local copy of the coin state. Anybody can join the network as
a auditor by simply running a piece of software. Auditors ver-
ify new blocks decided by the stakeholders and check that the
stakeholders never equivocate on the content of a given block
height. Auditors roughly correspond to full nodes in other sys-
tems, although they have a more important role in Themelio’s
security.

• Client nodes are lightweight participants that query the net-
work of auditors to access specific information in the blockchain,
yet do not trust any particular auditor.

From this overview we can already see that the trust model of
Themelio differs significantly both from that of traditional public block-
chains like Bitcoin and from that of typical private blockchains. This
is one of its major innovations. Themelio’s trust can be summarized
succinctly as an “oligarchy with a free press”

2.3 consensus and trust 23

2.3.2 Stakeholders: the oligarchy

Synkletos: a new approach to proof-of-stake

In Themelio, a Byzantine-resistant fault tolerant algorithm based on
HotStuff is used between the stakeholders to establish consensus on
the content of the blockchain. The stakeholders form an “oligarchy”:
most users are not stakeholders, yet they get to decide the authoritative
state of the network. We call Themelio’s consensus algorithm, together
with the cryptoeconomic mechanisms that keep stakeholders honest,
Synkletos, after the Greek name for the Byzantine Senate.

Synkletos keeps track of a special secondary currency on the block-
chain known as the sym. Syms are traded freely alongside mels, the
main cryptocurrency of Themelio, with a regulated supply of 1 sym per
block (1.05 million syms per year). They can be thought of as “shares”
in a decentralized corporation in charge of deciding new blocks.

In order to become a stakeholder, one stakes at least 1,000 syms,
locking them up for a fixed period of time (at least 500,000 blocks,
or approximately 6 months) as a performance bond. During that
period of time, the stakeholder obtains voting rights in the consensus
algorithm in proportion to the amount of syms staked. The central
security assumption Themelio uses is that at least 2/3 of the staked
syms are in the hands of honest stakeholders — a fundamental property
of Byzantine-fault-tolerant consensus means we can’t get a better
threshold.

Two important questions remain:

• Why do we use proof of stake rather than another consensus
mechanism?

• How does Synkletos incentivize stakeholders to behave honestly,
and what makes Synkletos’ approach unique?

Why proof-of-stake?

Synkletos is a variation on proof of stake (PoS), a family of blockchain
consensus algorithms including Tendermint and Casper. In proof
of stake, influence over the consensus process is in proportion to
owning an asset, in this case syms. Why did we choose PoS over other
consensus algorithms, such as the venerable proof of work (PoW) of
Bitcoin, or the proof of authority (PoA) found in consortium and private
chains? The Ethereum Proof-of-Stake FAQ [15] give a strong general
defense of PoS; we highlight some properties of PoS we consider
especially important for Themelio:

• Higher security margin: Attacking a PoS blockchain directly
requires expending an vast amount of resources to buy up stake.
This is equivalent to around 1/3 of the total value of staking coins

24 themelio: a minimal blockchain

(a proxy of the economic value of the blockchain system). Thus,
as usage increases, PoS security will proportionately strengthen
until it becomes practically invulnerable to attacks on the consen-
sus protocol. Proof-of-work blockchains like Bitcoin, however,
can be subverted quite cheaply. Attacks reverting a full hour of
Bitcoin transactions cost less than $1,000,000 [19], pocket change
compared to the almost $100 billion Bitcoin market capitaliza-
tion. Finally, proof of authority, which is not a decentralized
solution, is very fragile to centralized attack vectors such as
hacking or government regulation.

• Immediate finality: PoS allows easy, secure finality using asyn-
chronous Byzantine fault-tolerant consensus protocols. This
means that even if networks are unreliable or malicious, a block
that is successfully appended to the blockchain will never be
reverted. This eliminates the unpredictable behavior found in
“chain-based” consensus protocols like proof of work, such as
forks, block reorganizations, and eclipse attacks.

• Stronger incentive-compatibility: As we will see later, staked
bonds allow us to punish misbehaving stakeholders by deleting
their stake. In other blockchains, misbehaving miners only lose
potential rewards or reputation. As the Ethereum FAQs put it,
“in PoW, we are working directly with the laws of physics. In
PoS, we are able to design the protocol in such a way that it has
the precise properties that we want - in short, we can optimize
the laws of physics in our favor.”

Rewards and slashing

How do we incentivize stakeholders to behave honestly? We use a
carrot-and-stick approach commonly found in systems using bonded
proof of stake. Honest stakeholders earn rewards over time in propor-
tion to the amount of syms they stake, while misbehaving stakeholders
can have their entire stake slashed given evidence of misbehavior.

Rewards to stakeholders come from two sources: sym inflation and
transaction fees. Stakeholders proposing new blocks earn rewards of
1 newlyminted sym per block, just like how Bitcoin miners earn a fixed
per-block reward. This implicitly taxes unstaked syms, discouraging
holding syms without staking them. Unlike in most other blockchains,
inflation is not intended to be the main source of stakeholder income.
Since we mint a fixed amount of syms every block, the growth rate
in the number of syms as well as the “interest rate” of staking syms
approaches zero, making inflation significant only as a short-term
bootstrapping subsidy until fees reach a significant level.

Instead, transaction fees are used as the main source of stakeholder
revenue. Transaction fees, denominated in mels, are imposed on ev-
ery transaction on the network. Themelio uses a unique mechanism,

2.3 consensus and trust 25

described in brief in the last section of this whitepaper, to charge a
slowly varying uniform fee voted on collectively by the stakehold-
ers. This mechanism, which is crucial to Synkletos’ cryptoeconomic
security, allows fees to be a significant and stable source of income
for stakeholders, while avoiding well-known game-theoretical attacks
such as fee-stealing associated with conventional auction-based fee
markets.

Slashing is the “stick” for punishing cryptographically provable
misbehavior. The last step of our Byzantine-fault-tolerant consensus
protocol has all stakeholders commit to a particular block by signing
it cryptographically. Honest stakeholders will always commit a valid
block and never “go back” on their collective decision. Thus, we have
two slashing conditions which leave cryptographic proof that a certain
stakeholder is dishonest:

• Equivocation, where a stakeholder commits to two different
blocks with the same block height

• Invalid block, where a stakeholder commits to an invalid block

In either of these cases, anybody can submit cryptographic evidence
(two conflicting signatures, or a signature on an invalid block) as
a specially-formatted transaction on the blockchain. This slashing
transaction removes the offending stakeholder, deleting all of the syms
associated with the stake. Slashing also reduces the supply of syms
and increases the fraction of rewards that other stakeholders receive.
This incentivizes large stakeholders to monitor each other and slash
misbehaving stakeholders.

Why two currencies?

One of the unique features of Themelio’s proof of stake is its separate
staking token, the sym, with features that intentionally discourage
use as money. Generally, PoS blockchains use their main “money”
coin, like ethers or EOS, as their staking asset. Why not do the same
for Themelio? Coins used as stake for consensus are fundamentally
equity shares. They are tokens representing fractional ownership of
the transaction fees and other “profit” of the system. Unfortunately,
equity shares are a poor form of money.

First of all, for money we want flexible, demand-responsive mon-
etary policies to reduce value volatility. Otherwise, the currency be-
comes an unpredictable store of value and a useless unit of account. In
the offline world, this is accomplished either by central bank policies
for fiat money, or natural supply elasticity for commodity money. For
equity shares though, unpredictable share dilution demolishes their
fundamental value proposition as fixed slices of profit. Thus, fixed
minting schedules, like those of bitcoins and syms, are perfect for
equity, but terrible for a new currency.

26 themelio: a minimal blockchain

Furthermore, demand for equity shares in an efficient market is
driven largely by speculation on future cash flow, while demand for
cash derives from the need for a medium of exchange. We don’t want
users of a currency to be forced to speculate on the future transaction
fees of a blockchain. Furthermore, increases in currency adoption as a
means of exchange shouldn’t drive destabilizing bubbles in currency
value.

Themelio therefore uses an independent currency, the sym, for the
role of equity stake. An independent equity token also turns out to be
crucial for establishing backing capital to stabilize the price of mels,
as detailed in the Melmint paper.

Achieving high performance

Scalable blockchains with immediate finality need a way to limit the
number of consensus participants. This is because Byzantine fault-
tolerant consensus algorithms have rapidly increasing overhead with
increasing participants. To achieve reasonable scalability and perfor-
mance, we are forced to limit the number of stakeholders to below a
few thousand.

Themelio’s way of restricting the number of stakeholders is through
the minimum requirement of 1,000 syms staked per validator. Essen-
tially, we limit entry into the oligarchy of stakeholders to only the
richest sym holders. Since sym supply follows a fixed schedule, this
places a hard limit of a few hundred new validators a year, so that
growth in overhead won’t outpace growth in computational capacity.

A large minimum stake seems, on the surface, unfair and unap-
pealing. After all, it “disenfranchises” the vast majority of potential
stakeholders and institutes a “plutocracy”! Unfortunately, other ap-
proaches that superficially sound more decentralized tend to have
crippling incentive problems. Ironically, they end up a lot more vul-
nerable to centralized threats.

For example, a common method of deriving a small amount of par-
ticipants from a large body of coinholders is delegated proof of stake
(DPoS). In DPoS, coinholders vote for people with voting power pro-
portional to their coin ownership, and only the fewwith the most votes
become “delegates” and participate in consensus. EOS is a popular
blockchain using DPoS.

Yet although DPoS gives a vote to all coinholders, it insulates coin-
holders from protocol incentives. Coinholders are not responsible for
the actions of the delegates they vote for, while misbehaving dele-
gates receive no punishment other than a loss of reputation. Thus,
coinholders have no incentive to vote for “good” nodes, delegates
have little incentive to behave correctly, and misbehavior is rampant.
Unsurprisingly, all the problems of political governance in a represen-
tative democracy get imported. Elections involve massive advertising
campaigns, vote-buying, and even nationalist agitation[25], while del-

2.3 consensus and trust 27

egates often behave as a centralized cartel, engaging in actions like
censoring transactions[14].

Sortition is another approach, used most notably in Algorand [16].
Periodically, a committee of participants is randomly selected from all
coinholders — each coinholder has a probability to win this “lottery” in
proportion to the coins that they hold. The committee then participates
in a consensus protocol to decide new blocks until the next lottery
comes around.

Sortition eliminates most of the politics-like problems of DPoS, al-
lowing protocol incentives like rewards and slashing to work fairly
well. Unfortunately, severe problems remain. Randomly selecting par-
ticipants trustlessly turns out to be a surprisingly hard cryptographic
problem — a corrupt lottery can reliably elect malicious committees.
Bribery attacks also become much easier, since instead of buying 1/3
of the coins, attackers can simply bribe the current committee, who
has only a small fraction of the stake. Complex consensus protocols
and advanced, non-quantum-resistant cryptographic techniques can
reduce both challenges. But “fancy” mechanisms generally go against
Themelio’s philosophy of future-proof simplicity.

A point must be made that blockchain consensus is not analogous to
political governance. Themelio’s “plutocratic oligarchy” of stakeholders
certainly does not make for an effective way of electing a parliament.
But for blockchains, it yields highly robust and decentralized security.
It disperses control over blockchain consensus to the few hundred
people most invested in the health of the network. At the same time,
the Synkletos protocol keeps them correctly behaving with massive
carrots and sticks. Stakeholders do not decide political questions
for the Themelio community; their only job is to run the consensus
algorithm correctly.

Thus, we do not believe that Themelio’s “plutocratic” bonded proof
of stake is any more vulnerable to centralized threats than PoS block-
chains without minimum stake amounts. Even so, Themelio has a
system of auditors keeping stakeholders in check, ensuring that even
a fully corrupted quorum of stakeholders cannot do much damage.

2.3.3 Auditors: the free press

Making failure catastrophic

The “free press” in Themelio consists of auditors. Auditors are “full
nodes” in usual terminology, replicating and validating the entire
blockchain. They form a random gossip network among themselves,
similar to that used by Bitcoin full nodes. Through this gossip network,
information about new blocks is disseminated. Gossip reduces load
on the stakeholders and makes it difficult for malicious networks to
censor the blockchain — as long as some auditors can connect to the

28 themelio: a minimal blockchain

stakeholders and the auditors form a connected graph, new blocks
will quickly be visible to every auditor.

The more important role of auditors, though, is to make consensus
failure catastrophic. This plays a crucial role in keeping the oligarchy
of stakeholders honest. Auditors utilize their position as relayers of
new blocks to continually monitor for evidence that the stakeholder
consensus is corrupt. For example, invalid blocks or two different
blocks at the same height signed by a quorum would be proof that
the coordinators are no longer trustworthy. These pieces of evidence,
known as consensus nukes, undeniably prove that at least 1/3 of the
stakeholders are actively malicious or compromised.

Any auditor that sees a consensus nuke immediately broadcasts it
to all auditors it knows in the gossip network. It then permanently
activates a “kill switch” and refuses to operate normally. Thus, an
attempt at forking or appending invalid transactions to the blockchain
would figuratively ”nuke” the entire network.

Why consensus nukes?

This objective seems a little strange. Why would we ever want our
network to self-destruct?

The obvious answer is that if we no longer have a 2/3 supermajority
of honest stake, the entire system is irrecoverable. More specifically,
a well-known result [11] mathematically proves that consensus pro-
tocols running in a partially synchronous network model (that is,
network delays are unknown but finite) cannot possibly tolerate more
than 1/3 arbitrary faults. So we have to choose between a model
where the network stays up, but malicious stakeholders can corrupt
the state arbitrarily (rewriting history, giving themselves free money
— or shutting down the network), or one where the only thing a cor-
rupted quorum can do is shut down the network. Clearly, the latter is
preferable.

More importantly, consensus nuking changes the incentives of po-
tential attackers by making most attacks unprofitable3. Consider a
blockchain where consensus-breaking attacks (like Bitcoin’s 51% at-
tack) allow arbitrary state corruption. A malicious actor with the
ability to execute such attacks can extract huge profits simply through
double-spending. With more complex higher-level applications rely-
ing on blockchain data, profit opportunities are even more numerous.
Thus, if enough rationally self-serving stakeholders collude, they are
greatly incentivized to attack the network and destroy its security
guarantees.

3 Consensus nuking can also be seen as a variation on “engineering security through
coordination problems”, a concept explored in a blog post by Vitalik Buterin [4].
Attacks by cartels are made impractical because they would require coordinating
many users to achieve a cartel-favorable result after the nuke and manual recovery.

2.3 consensus and trust 29

If a successful attack can only result in the network stopping all
work, only attackers who benefit from destroying the network will
participate. Since a successful attacker must stake a vast amount of
syms to take over more than 1/3 of the stake, destroying the network
and thus the value of the investment is usually irrational.

Finally, a shutdownwhen a successful attack occurs forces Themelio
users to manually coordinate an emergency “hard fork” out-of-band
to restore the network. This would involve, at the very least, a re-
distribution of stakes away from the attacking parties and possibly
protocol improvements to prevent future attacks. On the other hand,
if the blockchain continues to operate even when stakeholders are
corrupting the state, nothing forces users to coordinate a hard fork.
It’s conceivable that the malicious stakeholder cartel can create a cli-
mate of pressure for users to go along with the corrupted chain — for
example, the state corruption might be forced by legal regulation or
presented as way of restoring stolen assets. Consensus nuking ensures
that these scenarios are impossible.

2.3.4 Clients: thin yet fully secure

Most users of a blockchain, Themelio not excepted, do not have nearly
enough resources to process all transactions 24/7. Users that do not
synchronize the whole blockchain state, known as thin clients, serve a
vital role in any blockchain system. In other blockchains, though, thin
clients come with both reduced security and mediocre performance.
Bitcoin, for example, has thin clients who must persistently store a
growing set of block headers and connect to at least one trusted full
node.

In Themelio, thin clients (usually just called clients) are both thinner
and safer than thin clients in other systems. Clients only synchronize
a small piece of data, less than a kilobyte in size, a few times a year. Yet
with this data, they can fully validate a large variety of information they
can freely obtain from auditors. Even if a client only connects to bad
auditors, it cannot be fooled into accepting invalid data. We accomplish
this through two technical innovations: metastate commitments in
block headers and epoch-based stake bonds.

Metastate commitments

Blocks in Themelio, like those in almost all blockchains, have constant-
size headers that summarize information about that block. Block
headers typically cryptographically commit to certain pieces of infor-
mation, such as the transactions within a block, through hash trees and
similar mechanisms. Cryptographic commitments allow thin clients
to verify claims about the data they commit to without trusting third
parties or downloading the entire blockchain.

30 themelio: a minimal blockchain

In traditional coin-based blockchains, block headers commit only to
the previous block header and the transactions within the block. This
means thin clients can only verify claims that a certain transaction
occurred in a block — this is not enough even for basic applications
like wallets to be trustless. Account-based blockchains like Ethereum
improve on this by committing to the state, or all the information
needed to validate new transactions. This allows apps like wallets that
rely on querying the state to run trustlessly.

In Themelio, the state is simply the set of all unspent coins. We use
a sparse Merkle tree to commit in the block header to a mapping of
the coin identifier (hash of the transaction that produced the coin and
index of the coin) to coin metadata (value, covenant, etc). This allows
thin clients to verify whether or not a coin is spent at a certain block
height.

For some simple applications, like verifying a Catena log, this is suf-
ficient. Unfortunately, many applications on coin-based blockchains
need to access more than the plain state mapping. For example, wallets
would want to know which coins to spend without proofs of payment
from all incoming payers.

We therefore commit not just to the state mapping, but also to
metastate, or metadata about state. Metastate is not strictly necessary
for validating blocks, but cryptographic commitments to it in the block
header allows more powerful thin clients. This includes information
like:

• Number of unspent coins with a certain covenant

• Total number of transactions in the block

• Current block height

Thus, complex coin-oriented applications can trustlessly run on
clients that don’t need to synchronize anything but the latest block
header.

Epoch-based stake bonds

One problem remains: how are clients supposed to get the latest block
header? In many blockchains, clients simply synchronize all the block
headers. Clients would thus use “proof-of-consensus” information (in
Bitcoin’s case proof of work) embedded in each header to verify the
next.

In Themelio, such a strategy would be prohibitively expensive. One
of the tradeoffs we made that allows robust proof-of-stake immune to
network problems is greatly increased sizes of proofs of consensus. A
proof that a block header belongs to the valid blockchain in Themelio
requires cryptographic signatures from at least 2/3 of the stakeholders
— about 10 KB for a reasonable number of stakeholders. Furthermore,

2.4 cryptocurrency and economics 31

there are just a lot more blocks in Themelio than in Bitcoin. Instead of
blocks 10 minutes apart, Themelio produces a block every 30 seconds.
This means that in just a year, the block header consensus proofs
would amount to more than 10 GB.

To fix this problem, Themelio divides blocks into epochs lasting
500,000 blocks, or about half a year. Within each epoch, the list of
shareholders and their respective voting weights stays the same. All
stake-related transactions, such as staking and slashing, take effect
only at the start of the next epoch. Finally, the last block header of
each epoch embeds a stake document, which includes the shareholders
and voting weights to use when validating blocks in the next epoch.

This means that to validate, say, block header 1,100,000, we simply
need the stake document embedded in block 999,999. And to validate
that stake document, we just use the stake document in block 499,999.
This process repeats until we get to a stake document we already know
about.

So clients simply have to catch up on all the new stake documents
they missed — 10 KB every 6 months. Afterwards, they can securely
validate the latest block header, which then lets them check claims
about almost any fact about coins. Such ultra-thin clients allow apps
using Themelio to scale on small devices like smartphones, while
keeping trust totally decentralized.

2.4 cryptocurrency and economics

Finally, we examine the cryptocurrency economy of Themelio, based
on a low-volatility currency called the mel.

2.4.1 Mel: an endogenous stablecoin

Mels are optimized to be the day-to-day transaction currency on
Themelio. One can imagine decentralized apps, grocery stores, and
peer-to-peer finance to conduct transactions mainly denominated in
mel.

The biggest feature of the mel is that it is an endogenous stablecoin.
This is a completely novel asset class introduced by Themelio, and
it means that the mel maintains a stable value without being pegged
to any external asset, such as US dollars or gold. Mels maintain their
value without non-endogenously-trusted parties present in every other
stablecoin system, such as oracles, governance DAOs, and issuers.

The “magic” behind mel through a currency issuance algorithm we
published at CryptoEconSys 2020 [8] called Melmint. The details are
available in the paper, but the basic objective of Melmint is to peg the
value of 1 mel to 1 “DOSC”, a unit that tracks the cost of 24 hours of
sequential computation.

32 themelio: a minimal blockchain

By having a stable purchasing power without sacrificing trust, mels
would make it much easier to build secure financial assets, transact
in cryptocurrency, and protect wealth with Themelio’s endogenous
trust.

2.4.2 Better transaction fees

As in Bitcoin and other public blockchains, each transaction in Theme-
lio includes a transaction fee to compensate stakeholders and make
flooding attacks costly. Most other blockchains let transaction senders
voluntarily decide whatever fee they like; block creators then decide
which transactions to include in the limited space within a block. This
functions as a pretty fair and efficient first-price auction, since trans-
actions with more fees relative to the burden they pose to the network
get higher priority. Unfortunately, auction-based transaction fees paid
to whoever included the transaction in a block have several significant
problems:

• Fees are extremely volatile. When blocks are filled, average
fees will vary quite a lot as demand fluctuates. In practice,
persistently full blocks is the norm, whether due to demand
increase in protocols like Bitcoin where the block size cap is
fixed, or due to block producers setting block limits according to
demand as in Ethereum. Thus, fees for full blocks are extremely
volatile in existing blockchains, often changing as much as 2x
within one block interval. This makes for a very poor user
experience.

• Complex client-side fee estimation. It’s far from trivial how
much fees to bid in order to get transactions confirmed in a
traditional fee market. Wallets need complicated algorithms
to estimate the right amount of fee based on looking at uncon-
firmed transactions — which thin clients can’t even securely
monitor.

• Stakeholder incentive problems. In a proof-of-stake system
like Themelio, we want stakeholder income to come primarily
from transaction fees. That way, stakes have values in propor-
tion to the value of the system, making attacks harder as usage
grows (and damage increases), while giving stakeholders a dis-
incentive to collude to run Themelio into the ground. But a
conventional fee market encourages stakeholders to hide trans-
actions from each other — a transaction you include in a block
is a transaction fee that I didn’t get — leading to all sorts of
pathological “fee-stealing” strategies unless stakeholders have a
different source of income. This is why Bitcoin and Ethereum
rely heavily on inflation, not fees, to reward block producers,
but we don’t want that in Themelio.

2.4 cryptocurrency and economics 33

Figure 4: Per-block producer rewards (including sym inflation)

Thus, we abandon the traditional fee auction model in favor of
a system inspired by EIP-1559 [13]. Every transaction pays a mel-
denominated fee that has two components. A mandatory base fee
is calculated by multiplying by the base fee multiplier the weight of
a transaction, a metric that roughly measures its cost. Transaction
senders can then add a tip above and beyond the base fee.

Every time a new block is created, the stakeholder proposing the
block can adjust the base fee multiplier by up to 1% upwards or down-
wards — the base fee multiplier then reflects the stake-weighted me-
dian of the stakeholders’ preferences. Base fees, except for an eighth
which is burned, are deposited into a special fee pool regardless of
who included the transaction into the blockchain; the stakeholder
creating a block then withdraws a tiny fraction (1/65536) of the fee
pool. The net effect is that the base fee of a transaction is distributed
to all stakeholders regardless of who made the block that contains the
transaction.

Tips, on the other hand, are simply paid to the block producer, like
fees in traditional blockchains. We expect tips to be a small fraction of
total fees, and they give an incentive for block producers to actually
include transactions instead of freeloading on a fee pool replenished
by other, more honest block producers.

Figure 4 illustrates the flow of funds every time a new block is
created.

Why do our changes to the fee market fix its problems? First of all,
fee volatility is greatly reduced. When demand fluctuates in the short
term, it would be block sizes that fluctuate, not fees. Stakeholders
adjust the base fee multiplier to maximize revenue and limit block
sizes, but not rigidly at a defined size. One might object that stakehold-
ers can collude to recreate Bitcoin’s fee market — by holding down
the multiplier to zero, enforcing an unofficial block size limit, and
auctioning off block space based on tips. But a rational stakeholder
cartel will not do so, as assuming no change in demand, this will

34 themelio: a minimal blockchain

simply greatly increase income volatility without increasing expected
total income, while in reality volatile fees will probably scare away
some users, actually reducing revenue. Incidentally, this is also why
we award base fees to stakeholders rather than burning them as in
EIP-1559, since burning base fees will make colluding to create a fee
aucion highly profitable.

Secondly, clients no longer need complex algorithms to compute
fees. The base fee plus a small tip will be sufficient in all cases to get a
transaction onto the blockchain as fast as possible. Applications like
wallets or payment processors would easily predict the amount of fees
needed.

Finally, although we still reward stakeholders with some sym infla-
tion to discourage passive sym-holding, the use of a fee pool ensures
that even though stakeholders are rewarded mostly from fees, there’s
no incentive to steal fees. In fact, one can think of the fee pool as a
sort of long-term trust fund, derived from fees, for a stable Bitcoin-like
block reward.

3
APPL ICAT IONS AND PROTOCOLS

Let’s now take a look at the sort of protocol and application ecosystem
that Themelio supports. Current patterns for blockchain application
development are often unsuitable for Themelio due to the lack of
features such as smart contracts and sharding. We start from simple
to complicated apps, showing how with the help of novel upper-layer
abstractions and protocols, decentralization be much more robust and
performant.

3.1 astramel: scalable payments

Obviously, on-chain mel transactions can be used directly to send
money. However, as Themelio only processes at most 1000 transac-
tions a second, this does not scale to the extent required for global
microtransactions.

Fortunately, a solution already exists: payment channels. Payment
channels networks, used in protocols like Lightning Network on Bit-
coin or Raiden on Ethereum, route secure cryptocurrency payments
through untrusted intermediaries, allowing fully trustless payments
without conducting every transaction on the blockchain. PCNs are
in fact a primary example of a largely logically decentralized proto-
col with no consistent global state — they work very similarly to the
mutual-credit networks underpinning money transfers in the banking
system — yet they derive their security ultimately by relying on the
logically centralized blockchain as a root of trust.

Existing payment channel constructions for coin-based blockchains,
like the Poon-Dryja channels used in Lightning Network, can easily be
ported to Themelio. Perhaps more importantly, MelScript allows pow-
erful bidirectional payment channels to be constructed in a straight-
forward manner without hacks such as the temporary keypairs used
in Poon-Dryja channels.

Compared to payment channel networks on blockchains like Bit-
coin or Ethereum, a Themelio PCN would provide far better scalability
simply due to the faster blockchain — after all, opening and closing
payment channels is still limited by blockchain throughput. And com-
pared to the traditional banking network, payment channels give im-
mediate trustless finality, without any authorities that can steal funds
or reverse payments. Even on the scalability side, a payment channel
network on Themelio will greatly outperform traditional methods in
volume and latency, allowing custodian-free microtransactions for
applciations like paying road tolls.

35

36 applications and protocols

We have already developed Astrape, a novel PCN construction that
achieves both competitive performance and very strong anonymity.
A variant of Astrape, Astramel, is under development as a Themelio
project to become a standardized scalable asset-transfer scheme for
the Themelio blockchain.

In fact, we intend Astramel to be the primary payment protocol for
Themelio, rather than raw on-chain transactions. Even for a “basic”
functionality like value transfer, we believe that an indefinitely scalable,
logically decentralized protocol should be the standard.

3.2 conifer and bitforest: trust-minimizing naming

Using blockchains to implement decentralized and secure naming
systems is not a new use case. Blockstack and ENS are examples of
blockchain-backed naming systems, which consistently map human-
readable identifiers (such as domain names) to security-critical infor-
mation like public keys without trusting third parties. Legacy naming
systems, like DNS and CA-based PKI, are highly centralized and have
very fragile security, so even for traditional centralized services like
websites, a blockchain-backed, easily deployable naming system can
significantly improve security.

It’s not obvious how to embed a naming system in a coin-based
blockchain like Themelio. We have developed and published two
naaming protocols with different design tradeoffs, Conifer [10] and
Bitforest [9], for coin-based blockchains. Both encode name bind-
ings as a combination of an on-chain transaction graph and off-chain
centralized servers. Notably, both Conifer and Bitforest are federated
naming systems similar to DNS, where names are issued by diverse
authorities, but both use the logically centralized trusted functional-
ity of a blockchain to ensure that such authorities cannot engage in
attacks such as impersonation and equivocation.

Themelio’s more powerful coin-based programming paradigm is
especially suited for implementing these transaction graph-based nam-
ing systems. Notably, by using MelScript instead of simple authority-
controlled signature scripts, we can enforce invariants in on-chain
transaction graphs without the name-issuing authorities used in
Conifer and Bitforest. This allows us to develop variants of Conifer
and Bitforest that are entirely decentralized, using technologies such
as DHTs to implement the logically decentralized part of the naming
system.

Compared to existing blockchain solutions, a Themelio-based nam-
ing system would offer higher performance due to the blockchain’s
higher throughput, but much more importantly, a paradigm that en-
courages extensive use of horizontally-scaling off-chain decentralized
protocols. Furthermore, Themelio’s powerful thin-client abilities allow
deploying blockchain-based naming directly to the smallest of edge de-

3.3 token systems 37

vices, rather than relying on trusted gateways like in Blockstack. This
removes one of the biggest challenges in deploying naming systems
with fully decentralized trust.

3.3 token systems

Another major use case for Themelio is for tokens, like fundraising
tokens, cryptokitties, and new cryptocurrencies. Right now, a token
is most commonly implemented as a big stateful smart contract on
Ethereum, following API standards like ERC-20. This way of imple-
menting a token, unfortunately, is prone to error, often leading to
critical security vulnerabilities. Scalability is also a big challenge, as
massive stateful smart contracts cannot be easily parallelized even
with advanced features like sharding.

In Themelio, on the other hand, custom tokens are ridiculously easy
to create. Themelio tokens rely on a special case in its transaction
verification logic. Transactions must be balanced by currency — the
total values of mels, syms, etc in the input coins spent must be equal to
the total values in the outputs — with the exception that an unlimited
number of coins, with unconstrained values, can be created with
unlabeled units. Outputs with unlabeled units will then create coins
in the blockchain state with a new unit derived from the unique ID of
the transaction.

Thus, a new cryptocurrency token can be created simply by creating
any regular transaction while tacking on an additional unlabeled out-
put with the value set to the maximum supply of the new token. This
coin’s covenant script will then determine the rules of token issuance
— no other transactions can create coins with the same unit, since
custom tokens are always denominated by the first transaction that
created them.

Similarly, Themelio can be used to implement non-fungible tokens,
like “cryptokitties”. Non-fungible tokens are implemented simply by
creating an a new token unit with a coin that has a value of 1. Since 1
cannot be further subdivided, this means that only one coin of that
token can ever exist.

3.4 autonomous applications

The vast majority of Ethereum-style smart contracts deal with “asset-
like” objects like tokens and names and can usually be translated into
a simpler and more robust coin-based version on Themelio. One pro-
posed category of decentralized app, though, typically requires a vast
amount of state tracking and complex logic and is hard to implement
directly on Themelio — ownerless, fully autonomous applications. For
example, a smart contract on Ethereum might be an autonomous fi-
nancial company, negotiating legal contracts, generating packaging its

38 applications and protocols

assets into financial products, and pay the bills for a marketing website
while hiring people to maintain it, all without human intervention.

Autonomous blockchain entities as described do not really exist
except as a concept, and in any case such programs would not be able
to scale on Ethereum and other present blockchains due to their poor
performance. An autonomous application with security rooted on
Themelio would have to implement most of its logic outside the block-
chain even if Themelio could provide the requisite performance. For
example, the autonomous financial company might run its business
logic on traditional cloud services, while accepting payment and pay-
ing for its own bills with mels and issuing Themelio-based financial
assets. This way, the program would not spam the blockchain with
transactions every time its internal state changes. Trustless operation
can be achieved by synchronizing state through a trustless private
blockchain, as described in the next section.

3.5 trustless private blockchains

For some applications, nothing short of a new blockchain with its
own would do. Traditionally, this would require deploying a new
blockchain, private or public, just for use within the application. But
this greatly reduces security, as compromising a blockchain formed
by consensus between a small number of people is much easier than
taking over a public blockchain like Themelio or Ethereum.

One solution is to use a metachain, also known as a virtualchain,
where every time a transaction happens on the smaller blockchain, it
is embedded into a corresponding transaction on a public blockchain.
Clients of the metachain then scan the entire public blockchain for
valid-looking transactions to reach a consensus on the state of the
metachain — a very slow process.

Metachains can, of course, be implemented on Themelio, but us-
ing Themelio’s more expressive features can greatly increase their
performance. For example, all transactions claiming to be part of the
metachain can be placed in a permissionless Catena log (see 2.2.3).
Metachain clients could then avoid scanning through the mass of
unrelated Themelio transactions.

If the state transition function of the metachain can be expressed
in a short MelScript covenant, Themelio could even enforce the rules
of the metachain. This can be combined with using a unique “non-
fungible token” inside the Catena log to label the metachain. That
way, any thin client can request the transaction with the one and only
unspent output denominated in that token, and that transaction is
guaranteed to contain the latest state of the metachain.

As described, metachains would be public and permissionless, but
similar techniques can be used to secure private blockchains. Data in
metachains can be encrypted with a key that only authorized parties

3.5 trustless private blockchains 39

know, and the Catena log can have a signature-checking covenant
to block unauthorized users from spamming the metachain. Permis-
sioned metachains have a very attractive combination — they inherit
the immutability and trustlessness of Themelio, while preventing pub-
lic access to the contents of the metachain. We believe this is a much
better fit for business applications like bid tendering or supply-chain
tracking than private or consortium blockchains.

CONCLUS ION

Public blockchains, as originally envisioned, herald a fundamental rev-
olution in the way trust works in distributed systems. Unfortunately,
they have not seen widespread usage in production systems, outside
of a few applications using private blockchains that eschew most of
blockchains’ distinctiveness. Blockchain development has also run
into many serious obstacles, such as scalability and governance.

In this whitepaper, we argued that the main reason for the seem-
ing failure of public blockchains is an incorrect layering paradigm —
current blockchains are generally too close to the application layer,
forcing complex blockchain implementations on one hand and “leaky”,
rigid applications on the other hand. We propose that the correct
paradigm for blockchains is that of a minimal root of trust, providing
a magic ingredient of endogenous trust to applications that mostly
run outside the blockchain.

We described Themelio, a blockchain we developed to support this
vision, using many novel technologies and design tradeoffs not seen in
current blockchains. We also illustrated the wide range of applications
that can be developed using Themelio within a blockchain-minimizing
paradigm.

41

B I B L IOGRAPHY

[1] Frederik Armknecht et al. “Ripple: Overview and outlook”. In:
International Conference on Trust and Trustworthy Computing.
Springer. 2015, pp. 163–180.

[2] Leemon Baird. “The swirlds hashgraph consensus algorithm:
Fair, fast, byzantine fault tolerance”. In: Swirlds Tech Reports
SWIRLDS-TR-2016-01, Tech. Rep. (2016).

[3] Eric Brewer. “CAP Twelve years Later”. In: Computer 2 (2012),
pp. 23–29.

[4] Vitalik Buterin. “Engineering Security Through Coordination
Problems”. In: (2017). url: https://vitalik.ca/general/
2017/05/08/coordination_problems.html.

[5] Christian Cachin. “Architecture of the Hyperledger blockchain
fabric”. In: Workshop on Distributed Cryptocurrencies and Con-
sensus Ledgers. 2016.

[6] Corda. Corda. 2020. url: https://www.corda.net/ (visited on
08/01/2020).

[7] Patrick Dai, Neil Mahi, and Alex Norta. “Smart-Contract Value-
Transfer Protocols on a Distributed Mobile Application Plat-
form”. In: (2018). url: https://whitepaper.io/document/8/
qtum-whitepaper.

[8] Yuhao Dong and Raouf Boutaba. “Melmint: trustless stable
cryptocurrency”. In: Cryptoeconomic Systems (2020).

[9] Yuhao Dong, Woojung Kim, and Raouf Boutaba. “Bitforest: a
Portable and Efficient Blockchain-Based Naming System”. In:
2018 14th International Conference on Network and Service Man-
agement (CNSM). IEEE. 2018, pp. 226–232.

[10] Yuhao Dong, Woojung Kim, and Raouf Boutaba. “Conifer:
centrally-managed PKI with blockchain-rooted trust”. In: 2018
IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData). IEEE. 2018, pp. 1092–1099.

[11] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. “Consen-
sus in the presence of partial synchrony”. In: Journal of the ACM
(JACM) 35.2 (1988), pp. 288–323.

[12] E-Estonia. KSI Blockchain. url: https : / / e - estonia . com /
solutions/security-and-safety/ksi-blockchain/.

43

https://vitalik.ca/general/2017/05/08/coordination_problems.html
https://vitalik.ca/general/2017/05/08/coordination_problems.html
https://www.corda.net/
https://whitepaper.io/document/8/qtum-whitepaper
https://whitepaper.io/document/8/qtum-whitepaper
https://e-estonia.com/solutions/security-and-safety/ksi-blockchain/
https://e-estonia.com/solutions/security-and-safety/ksi-blockchain/

44 bibliography

[13] “EIP-1559: Fee market change for ETH 1.0 chain”. In: (2014). url:
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-

1559.md.

[14] EOS’ Blockchain Arbitrator Orders Freeze of 27 Accounts. 2018.
url: https : / / www . coindesk . com / eos - blockchain -

arbitrator-orders-freeze-of-27-accounts.

[15] Ethereum Proof of Stake FAQ. 2019. url: https : / / github .
com/ethereum/wiki/wiki/Proof-of-Stake-FAQ (visited on
03/29/2019).

[16] Yossi Gilad et al. “Algorand: Scaling byzantine agreements for
cryptocurrencies”. In: Proceedings of the 26th Symposium on
Operating Systems Principles. ACM. 2017, pp. 51–68.

[17] Eleftherios Kokoris-Kogias et al. “Omniledger: A secure, scale-
out, decentralized ledger via sharding”. In: 2018 IEEE Symposium
on Security and Privacy (SP). IEEE. 2018, pp. 583–598.

[18] Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash sys-
tem”. In: (2008).

[19] PoW 51% Attack Cost. 2019. url: https://www.crypto51.app/.

[20] J Ronald Prins and Business Unit Cybercrime. “Diginotar certifi-
cate authority breach ‘operation black tulip”’. In: Fox-IT, Novem-
ber (2011).

[21] Quorum. Quorum. 2020. url: https://www.goquorum.com/
(visited on 08/01/2020).

[22] Ronny Richardson and Max North. “Ransomware: Evolution,
mitigation and prevention”. In: International Management Re-
view 13.1 (2017), pp. 10–21.

[23] SecureKey. Building Trusted Identity Networks. url: https://
securekey.com/.

[24] Cass R Sunstein. Republic: Divided democracy in the age of social
media. Princeton University Press, 2018.

[25] The EOS supernode election: a national struggle worth “hundreds
of billions” (in Chinese). 2018. url: https://zhuanlan.zhihu.
com/p/34902188 (visited on 04/01/2019).

[26] Alin Tomescu and Srinivas Devadas. “Catena: Efficient non-
equivocation via bitcoin”. In: 2017 IEEE Symposium on Security
and Privacy (SP). IEEE. 2017, pp. 393–409.

[27] Maya Wang. “China’s Chilling ‘Social Credit’ Blacklist”. In: The
Wall Street Journal 11 (2017).

[28] Gavin Wood. “Ethereum: A secure decentralised generalised
transaction ledger”. In: Ethereum Project Yellow Paper 151.2014
(2014), pp. 1–32.

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://www.coindesk.com/eos-blockchain-arbitrator-orders-freeze-of-27-accounts
https://www.coindesk.com/eos-blockchain-arbitrator-orders-freeze-of-27-accounts
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://www.crypto51.app/
https://www.goquorum.com/
https://securekey.com/
https://securekey.com/
https://zhuanlan.zhihu.com/p/34902188
https://zhuanlan.zhihu.com/p/34902188

	Introduction
	A ``blockchain revolution''?
	The promise of blockchains
	Where are all the blockchain apps?

	What's wrong with blockchains?
	Attempts at better blockchains
	Are blockchains stuck?
	The crux: endogenous trust
	Weak endogenous trust in existing blockchains

	Towards a new paradigm
	A minimal blockchain
	Building a rich ecosystem

	Themelio: a minimal blockchain
	Design goals
	Goals

	A robust transaction model
	Coin-based transactions
	Why coins?
	Covenant scripting with MelScript
	Coin-oriented interface

	Consensus and trust
	Oligarchy with a free press
	Stakeholders: the oligarchy
	Auditors: the free press
	Clients: thin yet fully secure

	Cryptocurrency and economics
	Mel: an endogenous stablecoin
	Better transaction fees

	Applications and protocols
	Astramel: scalable payments
	Conifer and Bitforest: trust-minimizing naming
	Token systems
	Autonomous applications
	Trustless private blockchains

