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1 Introduction
In the main Themelio whitepaper, we’ve described Themelio as if it were a magic
oracle that always correctly maintains the world state and applies updates to it
every block. In the real world, though, we require a consensus procedure to ensure
both consistency — all Themelio users observe the same world state σ at every block
height — and validity — σ can only change through valid transactions. In fact,
consensus is what drives the two unique properties of blockchains we identified,
endogenous trust and logical centralization. All security properties of blockchains
are ultimately anchored in the design of the consensus mechanism.

Unfortunately, consensus is also a major source of instability and complexity
in blockchains. Contentious blockchain governance problems are often tied to
consensus-related issues such as decentralization (for example, the controversy
surrounding Bitcoin block sizes), and attacks on existing blockchains, such as the
51% attack on Namecoin, selfish mining attacks on Bitcoin, etc, focus on exploiting
problems in consensus.

Blockchain consensus also differs with consensus in other distributed systems
in how it must rigorously model trust within a game-theoretical model, rather
than simply making assumptions about fault tolerance. To truly achieve incentive-
compatible endogenous trust, we cannot rely on the typical approach of considering
ideal “honest” behavior and then positing an “adversary” with certain powers. Yet
cryptoeconomic mechanism design is still a young field full of uncertainties —
game-theoretical models often give results different from actual empirical observa-
tions — and creating a consensus mechanism that is incentive-compatible under a
wide variety of real-world conditions has proven to be pernicuously difficult. Nev-
ertheless, we believe that we must abandon an ad-hoc approach to cryptoeconomic
design — that is, designing a consensus mechanism either heuristically or under
simplified “distributed systems” security models, while analyzing the economics
and incentives later, if at all.

Themelio takes a unique, “economics-first” approach to designing consensus
and related cryptoeconomicmechanisms. We start by introducing a very pessimistic
model: a blockchain totally controlled by one rational profit-maximizing entity.
We consider what sort of blockchain rules would such a centralized business
enforce, in the absence of external attackers. Perhaps surprisingly, we find that a
rational monopoly would in fact behave in a trustworthy manner — the problem
with centralized systems is actually “irrationality”, or rather hard-to-model utility
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functions.
Finally, we construct Themelio’s decentralized consensus mechanism. We show

that a variant of proof-of-stake with a few critical departures from existing designs
elegantly incentivzes a large, permissionless group of stakeholders to simulate
this ideal rational entity as a whole, regardless of whether they coordinate their
actions or not. This approach ensures that not only will consensus produce the
desired results in a conventional “non-coordinating majority” world, Themelio’s
mechanism is actually collusion-proof : a rational colluding majority will simply
act the same way as our desired rational monopoly! Thus, Themelio avoids the
pervasive yet fragile reliance on coordination costs to protect blockchain security.

2 Goals and premises

2.1 The problem of coordination

A commonly referred-to concept in blockchains is coordination. More specifically,
we often see uncoordinatedmajority assumptions, where the security of a blockchain
relies on assuming that no more than some small fraction (usually between 25% and
50%) of consensus participants can coordinate their actions, and that participants are
rational. For example, in Bitcoin we assume that no more than 50% of the mining
power can collude, or otherwise double-spending and similar attacks become
profitable to the miner cartel.

Intuitively, this assumption seems very attractive. Coordination seems difficult
in a permissionless blockchain: getting a majority of pseudonymous participants
to agree to do something bad appears to be a costly “cat herding” exercise. Further-
more, collusion of a majority appears to be a scenario where the blockchain has
already failed — after all, decentralization is a central pillar of the entire appeal of
blockchains.

Unfortunately, we believe that this entire paradigm is problematic. This is be-
cause “coordination” is a very slippery concept. For one, to even become consensus
participants, users must in a broad sense coordinate to know about a blockchain,
run compatible software, etc. Already, reality contradicts a theory of narrowly
self-interested parties with no knowledge of or ability to contract with each other.
Moreover, consensus participants in existing blockchains clearly coordinate in
many ways not anticipated by the protocol. Ethereum miners, for example, almost
unanimously vote for the same block size limit, while changing their votes in
unison. These changes typically happen through out-of-band initiatives in forums
and such.

So what prevents consensus participants from coordinating for “evil”, if they
routinely coordinate anyway? Indeed, some blockchains have fallen victim to
protocol-violating collusion, such as when EOS’s consensus participants decided
to collude in censoring a set of accounts. It’s not at all clear what game-theoretical
incentives protect other blockchains from similar attacks.

We conclude that although very commonly used in blockchain design, unco-
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ordination assumptions do not reflect reality and should not be used in Themelio.
Instead, we start with a model that assumes the opposite — a perfectly coordinated
monopoly — and then use cryptoeconomic incentives to simulate this model.

2.2 A “despotic” blockchain

Let’s consider a “blockchain” operated by a single, profit-maximizing entity with
control over the entire consensus. This entity is essentially a centralized business
offering to add transactions to the blockchain for a price. What would be a rational
course of action for this “blockchain despot”? We show that such a despot would,
in fact, behave in a reasonably ideal manner.

A seemingly obvious objection would be that the despot would greatly abuse
the users of the blockchain, through double-spending, censorship, and similar
attacks. Isn’t the whole point of decentralization to avoid monopolies exploiting
their customers? However, a perfectly rational blockchain operator, constrained
to offer blockchain services rather than simply choose a different line of business,
would not choose such a course of action. The blockchain operator would like to
establish a reputation to follow protocol rules correctly, or otherwise its customers
will not continue using the blockchain and its only source of revenue disappears.

More generally, we would expect the following two behaviors to emerge:

• The despot offers to include each transaction in the blockchain for a revenue-
maximizing fee. This is the fee level at which further increases in fees would
decrease revenue due to decreasing demand, and can be modeled using
standard microeconomic monopoly models.

• Theminimumbribe needed for the despot to engage in “destructive” behavior
(such as disobeying the blockchain protocol) is the present value of the future
lost fees of such behavior. This bribe need not be a literal bribe, but rather
any sort of external payoff from disobeying the protocol. For example, if
the operator also controls competing systems such as traditional payment
networks, it might be in its interest to “irrationally” destroy the blockchain
even without third-party influence.

Let’s now show that first, the revenue-maximizing fee will not be extortionately
high, and second, the minimum bribe will be a large fraction of the entire economic
value generated by the protocol. This ensures that the “average” despot would be
very trustworthy indeed.

2.2.1 Revenue-maximizing fees

The rational behavior of a revenue-maximizing monopoly is an elementary subject
in microeconomics. The price that maximizes revenue for a monopoly depends
on demand elasticity — the ratio −dQ

dP
between a small change dP in price and

a corresponding change dQ in quantity demanded. For example, a good with a
demand elasticity of 1will have demand increase by 1% for every increase in supply
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by 1%. Generally, demand elasticity varies for the same good at different prices,
increasing as price increases. To maximize revenue, a monopoly will charge at the
price that gives a demand elasticity of 1, where any increase in price will decrease
quantity enough to reduce total revenue.

Unfortunately, studies of demand elasticity in blockchains are few and far
between. In fact, to our best knowledge the only discussion of demand elasticity
in blockchains is a forum post by Vitalik Buterin [7]. It examines a few “natural
experiments” where the throughput of Bitcoin and Ethereum were reduced due to
unexpected network conditions, coming to the conclusion that the demand elasticity
of the Bitcoin fee market is between 0.4 and 0.7, while that of the Ethereum fee
market is between 1 and 2.

Even from a ballpark estimate like this, we already see that the fees that a
blockchain despot would charge cannot be far from those charged by existing
blockchain protocols. In fact, though Buterin implies that the different elasticities
are due to the different applications of the two blockchains, we think that a better
explanation is simply that Bitcoin’s low block size limit forces it to operate at a
point in the demand curve with low elasticity, while Ethereum allows miners to
vote on the gas limit to maximize revenue. A rational despot would certainly charge
significantly lower fees, and produce more revenue, than Bitcoin does on average,
and perhaps would charge similar fees to that of Ethereum.

2.2.2 The price of bribing a despot

We’ve established that a hypothetical despot would receive roughly the same level
of fee revenue as Bitcoin and Ethereum do each year — 1-3% of the yearly on-chain
economic activity Y . What would be the cost of bribing this despot to destroy the
blockchain? This can be easily answered by calculating the present value of future
fee revenue, which the despot must give up as a result of destroying the blockchain.
This would range from 0.2Y assuming a high discount rate of 5% and low revenue
of 0.01Y , to as much as 3Y with a discount rate of 1% and an annual revenue of
0.03Y .

To put this in perspective, for Bitcoin Y ≈ 300000BTC, or around 2 billion US
dollars. Even a low-end estimate of 0.2Y would exceed the cost of a 51% attack
on Bitcoin by many orders of magnitude. Thus, we see that assuming the despot
is rational, bribing him to damage his own cash cow would be much harder than
attacking current blockchains.

2.3 Decentralizing the despot

Now that we’ve shown that a centralized blockchain operator would, rationally,
behave quite ideally. Why do we even bother with decentralization? The answer
is that there are two assumptions in the analysis that we can’t rely on in the real
world — that the despot is perfectly rational, and that it has a utility function
valuing only monetary revenue. In the real world, centralized businesses often
make irrational, non-profit-maximizing decisions, and they are subject to a wide
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variety of utility-function-distorting pressures such as government regulation and
public opinion. Thus, we simply cannot trust that a centralized operator would in
fact behave like our hypothetical blockchain despot.

However, we believe that our ideal despot is indeed a good model for a coordi-
nated coalition of decentralized parties. Decentralization ensures that the utility
function of the group as a whole will be that of an “average” despot, which will
not have idiosyncratic factors that prevent our analysis from working. This gives
us Themelio’s main mechanism design goal — creating a mechanism that simulates
a rational blockchain despot by coordinating many parties, some of which might
not be able to coordinate without help.

This may seem to be a rather weird framework. After all, a blockchain despot
will rationally make quite a few suboptimal choices, such as demanding fees higher
than those that will maximize social utility. The reason why we choose this
approach are twofold:

• Robustness against out-of-band collusion: Essentially, Themelio’s protocol
mechanisms are designed to coordinate participants to act the way they
would if they could perfectly collude out of band. Thus, we eliminate the
risk of cartels breaking protocol guarantees.

• Creates a single Nash equilibrium: Even if we harden a traditional blockchain
protocol based on a non-coordination equilibrium against malicious cartels,
it would be difficult to avoid different behavior in a non-coordinated and
coordinated world (say, significantly different fee levels). Such a blockchain
would havemultiple stable equilibria, causing uncertainty as to which “world”
applications will operate under in the future and turmoil during transitions
between equilibria. Themelio’s approach, on the other hand, ensures stable
behavior even as coalitions potentially form and disband.

We describe how we construct this decentralized despot in two parts. First,
we outline Themelio’s proof of stake mechanism called Synkletos1, which uses
a unique dual-token system to incentivize blockchain-despot-like behavior and
mitigates the well-known “weak subjectivity” problem of proof-of-stake systems
by dividing time into “stake epochs”. We then look at Themelio’s novel fee and
reward system that supports the incentives of Synkletos through a mechanism that
safely funds almost all protocol rewards through user fees.

3 Synkletos: consensus in Themelio
Now let’s look at Synkletos, Themelio’s proof-of-stake consensus mechanism.
We first discuss Synkletos’ tripartite division of users into stakeholders, auditors,
and clients. We then examine the roles each of these classes play in maintaining
Themelio’s decentralized “despot simulation”.

1From Greek for “senate”, a reference to the Byzantine Senate
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3.1 Three kinds of nodes

Participants in Themelio are divided into three categories by their roles:

• Stakeholder nodes record transactions into new blocks and confirm them
using a Byzantine fault-tolerant consensus algorithm between themselves.
They communicate with each other through a broadcast protocol which
other nodes in the network never participate in. Anybody can become a
stakeholder by locking up a significant amount of cryptoasset as collateral,
similar to other PoS systems like Casper. Stakeholders correspond to miners
or validators in other systems.

• Auditor nodes download newly created blocks from the stakeholders and
gossip them between themselves while mirroring the entire world state.
Anybody can join the network as a auditor by simply running a piece of
software. Auditors verify new blocks decided by the stakeholders and check
that the stakeholders never equivocate on the content of a given block height.
Auditors roughly correspond to full nodes in other systems, although they
have a more important role in Themelio’s security.

• Client nodes are lightweight participants that query the network of auditors
to access specific information in the blockchain, yet do not trust any particular
auditor.

Essentially, the stakeholders create blocks through a proof-of-stake consensus,
but auditors check their results, and everything can be queried by clients. Let’s
now see how this actually works.

3.2 Stakeholders: the oligarchy

Themelio uses a variation on a classic technique known as bonded proof of stake,
used in systems like Tendermint and Casper. We keep track of a special secondary
currency on the blockchain known as the sym, Greek for “share” in the financial
sense. Syms are traded freely alongside mels, the main cryptocurrency of Themelio,
with a relatively unchanging supply. They can be thought of as equity “shares” in
the distributed blockchain despot, sharing both control and revenue.

In order to become a stakeholder, one stakes at least 1,000 syms, locking them
up for a fixed period of time (at least 500,000 blocks, or approximately 6 months) as a
performance bond. During that period of time, the stakeholder obtains voting rights
in a consensus algorithm in proportion to the amount of syms staked. Furthermore,
the stakeholder staking x% of all staked syms receives revenue in proportion to x%
of all economic value provided by Themelio. This ensures that the value of a sym
v is proportional to the total economic value of Themelio Y divided by the number
of staked syms S: v ∝ Y /S. We will discuss how this is accomplished in 4.
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3.2.1 Byzantine fault-tolerant consensus

The stakeholders come to agreement on each block through a partially synchronous
Byzantine fault-tolerant (BFT) consensus algorithm. Formally, we abstract this as a
protocol (σ′, πσ′, B) := B F T (σ, T ∗

tentative) deciding the next block from the current
state, run at every stakeholder node, where

• σ is the current world state

• T ∗
tentative is a tentative proposal of transactions to include in the next block,

which may not be consistent across all stakeholders.

• B is the newly produced block, consistent across all honest stakeholders.

• σ′ = Ω(B,Υ∗(σ, T ∗
final)) is the new block state, consistent across all honest

stakeholders, where T ∗
final is the decided set of transactions in the new block.

• πσ′ is a consensus proof consisting of a list of cryptographic signatures by
stakeholders, each signing B 2 H (σ′).

B F T also has the following three properties:

• Accountable safety: as long as at least 2/3 of the syms staked by the stakehold-
ers belong to protocol-following stakeholders (“there is a quorum”), all honest
stakeholders agree on the same σ′, and σ′ must be the result of applying a
valid block-level state transition to σ. Furthermore, every protocol-following
stakeholder will only sign one proposal for σ′, so two valid consensus proofs
of the same block height will never occur if there is a quorum.

• Liveness: as long as there is a quorum, the protocol will make progress.

• Fairness: each stakeholder’s proposal is accepted roughly in proportion to
its share of all staked syms.

In the current implementation of Themelio, we use HotStuff as an implemen-
tation of B F T , but the actual choice is not really important. This is because the
consensus proof π′

σ encapsulates the result of the consensus algorithm, and the
rest of the details are invisible from the rest of the network. In fact, we don’t con-
sider the BFT consensus algorithm itself to be part of the “consensus-critical” core
that must stay stable over time! Any changes must be backwards-compatible, but
fundamentally as long as compatible consensus proofs are generated, stakeholders
are free to switch to different BFT consensus algorithms.

3.2.2 Why proof-of-stake?

Why did we choose PoS over other consensus algorithms, such as the venerable
proof of work (PoW) of Bitcoin, or the proof of authority (PoA) found in consortium
and private chains? There are both general reasons that apply to all proof-of-stake
systems, and also a reason more specific to how Themelio uses proof of stake. The
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Ethereum Proof-of-Stake FAQ [8] give a strong defense of PoS; some properties of
PoS in general we consider especially important for Themelio include:

• Higher security margin: Attacking a PoS blockchain directly requires ex-
pending an vast amount of resources to buy up stake. This is equivalent
to around 1/3 of the total value of staking coins (a proxy of the economic
value of the blockchain system). Thus, as usage increases, PoS security will
proportionately strengthen until it becomes practically invulnerable to at-
tacks on the consensus protocol. Proof-of-work blockchains like Bitcoin,
however, can be subverted quite cheaply. Attacks reverting a full hour of
Bitcoin transactions cost less than $1,000,000 [11], pocket change compared
to the almost $100 billion Bitcoin market capitalization. Finally, proof of
authority, which is not a decentralized solution, is very fragile to centralized
attack vectors such as hacking or government regulation.

• Immediate finality: PoS allows easy, secure finality using asynchronous
Byzantine fault-tolerant consensus protocols. This means that as long as
we have a quorum, a block that is successfully appended to the blockchain
will never be reverted. This eliminates the unpredictable behavior found
in “chain-based” consensus protocols like proof of work, such as forks and
block reorganizations. More importantly, it eliminates the implicit trust in
network synchronicity found in “longest-chain” style consensus algorithms,
preventing eclipse and similar attacks.

• Stronger incentive compatibility: As we will see shortly, staked bonds allow
us to punish misbehaving stakeholders by deleting their stake. In other
blockchains, misbehaving miners only lose potential rewards or reputation.
As the Ethereum FAQs put it, “in PoW, we are working directly with the laws
of physics. In PoS, we are able to design the protocol in such a way that it
has the precise properties that we want - in short, we can optimize the laws
of physics in our favor.”

The most important reason why we use proof of stake with a special staking
token, however, is that it distributes the utility function of a hypothetical despot to all
participants. Intuitively, this is because the stakeholders as a whole receive the same
consequences of their collective actions as a despot, while syms, being valued as
fractions of the revenue of the stakeholder collective due to B F T ’s fairness property,
would depreciate and appreciate to replicate these consequences in proportion to
the number of syms someone owns. This relies crucially on the fact that the sym is
an “equity” share; a single proof-of-stake system using a currency-like coin, such
as that proposed for Ethereum, would not have such an elegant incentive structure.

A more complete account of how the incentives work, though, would have to
wait to 4.
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3.2.3 Performance vs decentralization

Scalable blockchains with immediate finality need a way to limit the number
of consensus participants. This is because Byzantine fault-tolerant consensus
algorithms have rapidly increasing overhead with increasing participants. To
achieve our key design goal of scalability and performance and avoid DoS attacks,
we cannot simply allow a limitless number of stakeholders.

Themelio’s way of restricting the number of stakeholders is through the mini-
mum requirement of 1,000 syms staked per validator. Essentially, we limit entry
into the oligarchy of stakeholders to only the richest sym holders. Since sym supply
follows a fixed schedule, this places a hard limit of a few hundred new validators a
year, so that growth in overhead won’t outpace growth in computational capacity.

Although this is a very simple mechanism of restricting the number of con-
sensus participants, it does not seem to be popular among existing proof-of-stake
variants. We think this is most likely because a large minimum stake is politically
unappealing. After all, it “disenfranchises” the vast majority of potential stakehold-
ers and institutes a “plutocracy”! Unfortunately, other approaches that superficially
sound more decentralized tend to have crippling problems. Ironically, they end up
a lot more vulnerable to centralized threats.

For example, a common method of deriving a small amount of participants from
a large body of coinholders is delegated proof of stake (DPoS). In DPoS, coinholders
vote for people with voting power proportional to their coin ownership, and only
the few with the most votes become “delegates” and participate in consensus. EOS
is a popular blockchain using DPoS.

Yet although DPoS gives a vote to all coinholders, it insulates coinholders from
protocol incentives. Coinholders are not responsible for the actions of the delegates
they vote for, while misbehaving delegates receive no punishment other than a
loss of reputation. Thus, coinholders have no incentive to vote for “good” nodes,
delegates have little incentive to behave correctly, and misbehavior is rampant. Un-
surprisingly, all the problems of political governance in a representative democracy
get imported. Elections involve massive advertising campaigns, vote-buying, and
even nationalist agitation [12], while delegates often behave as a centralized cartel,
engaging in actions like censoring transactions [6].

Sortition is another approach, used most notably in Algorand [9]. Periodically,
a committee of participants is randomly selected from all coinholders — each
coinholder has a probability to win this “lottery” in proportion to the coins that
they hold. The committee then participates in a consensus protocol to decide new
blocks until the next lottery comes around.

Sortition eliminates most of the politics-like problems of DPoS, allowing proto-
col incentives like rewards and slashing to work fairly well. Unfortunately, severe
problems remain. Randomly selecting participants trustlessly turns out to be a
surprisingly hard cryptogrpahic problem — a corrupt lottery can reliably elect
malicious committees. Bribery attacks also become much easier, since instead of
buying 1/3 of the coins, attackers can simply bribe the current committee, who
has only a small fraction of the stake. Complex consensus protocols and advanced,
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non-quantum-resistant cryptographic techniques can reduce both challenges. But
“fancy” mechanisms generally go against Themelio’s philosophy of future-proof
simplicity.

A point must be made that blockchain consensus is not analogous to political
governance. Themelio’s “plutocratic oligarchy” of stakeholders certainly does not
make for an effective way of electing a parliament. But for blockchains, it yields
highly robust and decentralized security, because we don’t pursue decentralization
for its own sake. Instead, it is simply to average out individual interests to simulate
a blockchain despot, implying that decentralization has rapidly diminishing returns.

Thus, we do not believe that Themelio’s “plutocratic” bonded proof of stake is
any more vulnerable to centralized threats than PoS blockchains without minimum
stake amounts. Even so, as we will immediately see, Themelio has a system of
auditors keeping stakeholders in check, ensuring that even a fully corrupted quorum
of stakeholders cannot do much damage.

3.3 Auditors: keeping stakeholders in check

3.3.1 Making failure catastrophic

The second role in Themelio belongs to the auditors. Auditors are “full nodes” in
usual terminology, replicating and validating the entire blockchain. They form a
random gossip network among themselves, similar to that used by Bitcoin full nodes.
Through this gossip network, information about new blocks is disseminated. Gossip
reduces load on the stakeholders and makes it difficult for malicious networks to
censor the blockchain — as long as some auditors can connect to the stakeholders
and the auditors form a connected graph, new blocks will quickly be visible to
every auditor.

The more important role of auditors, though, is to make consensus failure catas-
trophic. This plays a crucial role in replicating the utility function of a blockchain
despot to the oligarchy of stakeholders. Auditors utilize their position as relayers of
new blocks to continually monitor for cryptographic evidence that the stakeholder
consensus is corrupt. This is either a consensus proof πσ with an invalid state σ
(“invalid state”), or two consensus proofs (πσ1, πσ2) where σ1.h e i g h t = σ2.h e i g h t
but σ1 6= σ2 (“equivocation”).

Any auditor that sees a consensus nuke immediately broadcasts it to all auditors
it knows in the gossip network. It then permanently activates a “kill switch” and
refuses to operate normally. Thus, an attempt at forking or appending invalid
transactions to the blockchain would destroy the entire network.

3.3.2 Why consensus nukes?

This objective seems a little strange. Why would we ever want our network to
self-destruct?

The obvious answer is that if we no longer have a 2/3 supermajority of honest
stake, the entire system is irrecoverable. More specifically, a well-known result [4]
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mathematically proves that consensus protocols running in a partially synchronous
network model (that is, network delays are unknown but finite) cannot possibly
tolerate more than 1/3 arbitrary faults. So we have to choose between a model
where the network stays up, but malicious stakeholders can corrupt the state
arbitrarily (rewriting history, giving themselves free money — or shutting down
the network), or one where the only thing a corrupted quorum can do is shut down
the network. Clearly, the latter is preferable.

Much more importantly, consensus nuking changes the incentives of potential
attackers by making breaking the consistency of the blockchain unprofitable for our
hypothetical blockchain despot. Consider a blockchain where consensus-breaking
attacks (like Bitcoin’s 51% attack) allow arbitrary state corruption. A malicious
actor with control over consensus can extract huge profits simply through double-
spending. With more complex higher-level applications relying on blockchain data,
profit opportunities are even more numerous. Thus, if self-serving stakeholders
rationally collude, they are greatly incentivized to attack the network and destroy
its security guarantees.

If a successful attack can only result in the network stopping all work, an
“average” profit-maximizing despot will not execute such an attack and destroy
their future revenue stream. Instead, only attackers who benefit from destroying
the network will participate, and even then, they must control a vast amount of
syms to be able to launch a consensus-breaking attack.

Finally, a shutdown when a successful attack occurs forces Themelio users to
manually coordinate an emergency “hard fork” out-of-band to restore the network.
This would involve, at the very least, a redistribution of stakes away from the
attacking parties and possibly protocol improvements to prevent future attacks. On
the other hand, if the blockchain continues to operate even when stakeholders are
corrupting the state, nothing forces users to coordinate a hard fork. It’s conceivable
that the malicious stakeholder cartel can create a climate of pressure for users to
go along with the corrupted chain — for example, the state corruption might be
forced by legal regulation or presented as way of restoring stolen assets. Consensus
nuking ensures that these scenarios are impossible.

3.4 Clients: scalable consumers of endogenous trust

Most users of a blockchain, Themelio not excepted, do not have nearly enough
resources to process all transactions 24/7. Users that do not synchronize the whole
blockchain state, known as thin clients, serve a vital role in any blockchain system.
In other blockchains, though, thin clients come with both reduced security and
mediocre performance. Bitcoin, for example, has thin clients who must persistently
store a growing set of block headers and connect to at least one trusted full node.

In Themelio, thin clients (usually just called clients) are both thinner and safer
than thin clients in other systems. Clients only synchronize a small piece of data,
less than a kilobyte in size, a few times a year. Yet with this data, they can fully
validate a large variety of information they can freely obtain from auditors. Even
if a client only connects to bad auditors, it cannot be fooled into accepting invalid
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data. We accomplish this through two features: state commitments in block headers
and stake epochs.

3.4.1 State commitments

As we’ve previously seen, at every block height h Themelio cryptographically
commits to its world state σh through a block header. This allows us auditors to
generate short proofs about the content of the current world state. More specifically,
given any key k and an SMT tree root (for example σh.transactions), an auditor
with access to the world state can generate either a proof that k is bound to a
specific value v, or that k does not exist in the mapping. This proof is only of size
Θ(logn), where n is the number of values in the SMT.

What this means is that given that it somehow obtains the latest block header
from a trustworthy source, a thin client can easily check the status of coins and
transactions by simply asking an untrusted auditor. This allows clients to trustlessly
interact with Themelio’s state in quite a complex manner. Note that although this
process is reminescent of Bitcoin’s SPV (simple payment verification) protocol [10],
a major difference exists in that Bitcoin does not commit to it world state in a way
that allows easy proofs. Instead, Bitcoin only commits to the content of each block,
allowing for proofs that a transaction was included in a block, but the actual status
of coins in the world state can only be trustlessly determined by downloading all
transactions and appling them to the genesis state. Thus, even very simple Bitcoin
applications, such as wallets, cannot operate with truly endogenous trust and must
rely on a trusted full node.

Of course, all this assumes that the client can in fact obtain the latest block
header trustlessly. This is accomplished by the second pillar of Themelio’s thin
client system, stake epochs.

3.4.2 Stake epochs

How are clients supposed to get the latest block header? In many blockchains,
clients simply synchronize all the block headers. Clients can then use the consensus
proof embedded in each header to verify the next. In “longest-chain” proof-of-work
blockchains such as Bitcoin, this consensus proof is simply a valid proof-of-work
solution. In Themelio’s case case, it would be the value πσ produced by B F T .

Unfortunately, such a strategy would be prohibitively expensive in Themelio.
πσ contains cryptographic signatures from at least 2/3 of the stakeholders — this is
at least 64 bytes (the size of an ed25519 signature) for every stakeholder, and would
take up dozens of kilobytes. Combined with Themelio’s 30-second block interval,
the block header consensus proofs spanning a year would amount to more than 10
GB.

To fix this problem, Themelio divides blocks into epochs lasting 500,000 blocks,
or about half a year. Within each epoch, the list of shareholders and their respective
voting weights stays the same. All stake-related transactions, such as staking and
slashing, take effect only at the start of the next epoch. When validating the hth
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consensus proof πσh
, we actually use the stake document σb(h−1)/500,000c.stakes

rather than the immediately preceding one.
Through this process, a client can quickly “skip back” until it reach a stake

document it already knows. For example, to validate block header 1,100,000, we
need the stake document embedded at height 999,999. But to validate the world
state that height, we need the stake document at height 499,999, etc.

Thus, to synchronize with the clients simply have to catch up on all the new
stake documents they missed — a few dozen KB every 6 months. Afterwards,
they can securely validate the latest block header, which then lets them query the
content of the world state without trusting anyone. Such ultra-thin clients allows
very good read scaling: billions of small devices like smartphones can easily query
the world state while keeping trust totally decentralized.

4 Fees and incentives
In this section, we describe how Themelio’s unique fee and incentive structure
coordinates the behavior of a decentralized group of stakeholders to approximate
that of a “blockchain despot”. This is accomplished by a fee mechanism that
incentivizes stakeholders to charge fees at the same level that a despot would
charge, while backing the value of their stakes with these fees.

4.1 Syms as equity shares

Earlier, we mentioned that Themelio uses a special secondary currency, the sym, in
its proof of stake mechanism. We hand-waved it as having “equity-like” properties,
but what exactly does that mean?

Consider the revenue-maximizing blockchain despot. Such a despot would
charge fees as to maximize the economic value captured. Let’s assume that Theme-
lio’s protocol can somehow charge fees exactly the way a despot would, and that
these fees are distributed to stakeholders in proportion to their stake. For example,
if there are only two stakeholders, Alice staking 10 syms and Bob staking 30 syms,
and the despot-simulating protocol collects 100 mels of fees a day, Alice would be
paid 25 mels/day while Bob would be paid 75 mels/day.

In such a model, staked mels are simply shares in the revenues of this sim-
ulated despot. Assuming that markets are efficient, then, the real value of each
stakeholder’s stake is proportional to that of the discounted future revenue of the
stakeholders as a whole. This is crucial to our goal of having the stakeholders
coordinate to simulate a single entity — any action that would harm or benefit a
despot would have proportionate harms or benefits to every single stakeholder.

For example, censoring transactions, an action that generally requires majority
coordination, would certainly harm the long-term economic value of Themelio and
thus the revenue stream of our hypothetical despot. Thus, a rational despot with
no external incentives will not choose to censor transactions. In Themelio’s actual
world of disparate stakeholders, coordinating to censor transactions will similarly
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harm each and every stakeholder, and thus no rational stakeholder would have an
incentive to participate in such a malicious act. Furthermore, an adversary wishing
to bribe stakeholders to take value-harming actions will have to compensate each
stakeholder for their expected loss of revenue — a value equivalent in total to
bribing a despot.

There are two remaining pieces in the puzzle:

• First, how do we generate a stream of fees that simulates the income of a revenue-
maximizing despot? The solution is a fee and reward system very different
from that of existing cryptocurrencies, which we will show incentivizes even
uncoordinated stakeholders to coordinate in charging fees at the right level.

• Secondly, how to prevent failures due to discoordination? Unlike most block-
chain protocols that assume uncoordinated participants, Themelio assumes a
world where stakeholders may rationally choose to coordinate their actions.
Yet we must avoid prisoner’s dilemma-type situations where uncoordinated
rational choices produce outcomes divergent from that of a unified despot.
This is done through two exceptional mechanisms in the incentive system —
slashing and nuking.

4.2 Stable and incentive-compatible fees

ss:stablefees
As in Bitcoin and other public blockchains, each transaction in Themelio in-

cludes a transaction fee to compensate stakeholders and make flooding attacks
costly. Most other blockchains let transaction senders voluntarily decide whatever
fee they like; block creators then decide which transactions to include in the limited
space within a block. This functions as a pretty fair and efficient first-price auction,
since transactions with more fees relative to the burden they pose to the network
get higher priority. Unfortunately, auction-based transaction fees paid to whoever
included the transaction in a block have two significant problems:

• Volatile, unfriendly fees. When blocks are filled, average fees will vary quite
a lot as demand fluctuates. In practice, persistently full blocks is the norm,
whether due to demand increase in protocols like Bitcoin where the block
size cap is fixed, or due to block producers setting block limits according to
demand as in Ethereum. Thus, fees for full blocks are extremely volatile in
existing blockchains, often changing as much as 2x within one block interval.
This makes for a very poor user experience.

Furthermore, it’s difficult to determine how much fees to bid in order to get
transactions confirmed in a traditional fee market. Wallets need complicated
algorithms to estimate the right amount of fee based on looking at uncon-
firmed transactions — which thin clients can’t even securely monitor. All
this tends to greatly increase the friction of using the blockchain.
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• Coordinated and uncoordinated rationality sharply diverge. Finally, a fee
market based on a first-price auction has severe incentive problems. In the
most well-known instance, if participants’ have revenue largely derived from
fees — a requirement for Themelio’s fee-backed syms to work — pathological,
protocol-violating behavior can result under a uncoordinated rationality
assumption [2]. Other blockchains typically mitigate the worst of the prob-
lems by funding consensus participation primarily with monetary inflation,
a choice Themelio cannot make.

The real problem underlying the game-theoretical “nastiness” of first-price
fee auctions, however is that even ideal uncoordinated rational behavior is
very different from coordinated rational behavior. In particular, ignoring the
pathological cases described in [2], uncoordinated block creators normally
want to include as many transactions as possible in their own blocks as long
as they pay fees exceeding the cost to process them. This is in contrast
to a “despot-simulating” coordinated cartel, which would want to reject
some transactions that would be profitable on the margin in order to jack
up the average fee level towards the revenue-maximizing point. As a rule of
thumb, games where uncoordinated equilibria greatly differ from coordinated
equilibria tend to be prone to pathological strategies — and in any case, our
design philosophy strongly favors collusion-proof incentive structures.

Thus, we abandon the traditional fee auction model in favor of a system inspired
by EIP-1559 [5]. Every transaction pays a mel-denominated fee that has two
components. A mandatory base fee B a s e F e e (t) = β · W e i g h t (t) for a transaction
t is calculated by multiplying by the base fee multiplier β and the weight of a
transaction, a metric that roughly measures its cost. Transaction senders can then
add a tip above and beyond the base fee.

Every time a new block is created, the stakeholder proposing the block can
adjust the base fee multiplier by up to 1% upwards or downwards — the base fee
multiplier then reflects the stake-weighted median of the stakeholders’ preferences.
Base fees are deposited into a special fee pool regardless of who included the
transaction into the blockchain; the stakeholder creating a block then withdraws
a tiny fraction (1/65536) of the fee pool. The net effect is that the base fee of a
transaction is distributed to all stakeholders regardless of who made the block that
contains the transaction.

Tips, on the other hand, are simply paid to the block producer, like fees in
traditional blockchains. We expect tips to be a small fraction of total fees, and they
give an incentive for block producers to actually include transactions instead of
freeloading on a fee pool replenished by other, more honest block producers.

Figure 1 illustrates the flow of funds every time a new block is created.
Themelio’s fee system fixes both fee unpredictability and incentive compatibility.

It’s comparatively easy to see why fees would be much more predictable — base
fees are charged at a publicly announced, slowly-changing value, and “base fee +
small tip” will be a working strategy for clients in almost all situations.
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Figure 1: Per-block producer rewards (including sym inflation)

Incentive compatibility is a little trickier. We assume that there is a single
revenue-maximizing fee multiplier β̂, where for a blockchain despot, charging
a fee of β · W e i g h t (t) for each transaction t is the revenue-maximizing strategy.
Furthermore, we assume that given any two multipliers β and β′ where |β′ − β̂| <
|β − β̂|, β′ generates more revenue in the long run than β. Informally, this just
means that nudging a suboptimal price closer to ˆbeta would always be profitable
for a despot.

Let’s now analyze one specific situation — one specific stakeholder assembling
a block to propose as the next block in the blockchain. In a world of perfectly
coordinated stakeholders, this stakeholder will of course nudge β closer to β̂ and
include as many valid transactions as possible, in accordance to the strategy we
assume is optimal for a despot. Furthermore valid transactions will be included
even without tips, since setting the base fee signals the reservation price of the
stakeholder cartel much better than refusing to accept transactions without the
right tip. Let’s now show that even when the stakeholder must make a decision
without coordinating with others, he will in fact behave the same way. More
precisely, we show that

1. Tips constitute a negligible portion of the fees charged by the stakeholder.

2. The base fee multiplier β will be set as close to β̂ as allowed by the protocol.

Showing that tips will be negligible is fairly easy. In an uncoordinated world,
the stakeholder building a block is incentivized to include every transaction whose
tips exceed its marginal processing cost, since otherwise some other stakeholder
will include the transaction instead. Tips converge to marginal processing cost,
just like how prices converge to marginal cost in any perfectly competitive market.

Empirically, this marginal cost is exceedingly small compared to the revenue-
maximizing fee. For example, transaction fees in Bitcoin were extremely low
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Single stakeholder Despot

Increase β f ·R(β + δ) R(β + δ)
Decrease β f ·R(β − δ) R(β − δ)

Figure 2: Payoff table for adjusting β by δ

before increasing demand led to block space becoming a scarce resource, averaging
around a few cents per transaction, compared to the multiple-dollar fees after
Bitcoin blocks filled up [1]. Yet these minuscule fees must have been sufficient to
cover the marginal cost of processing a transaction, for miners would otherwise
have not included them in the blockchain.

Let’s see why our second property holds: that the base fee multiplier continually
approaches the revenue-maximizing level. Assuming that tips are negligible, let’s
consider the payoffs of a single stakeholder and a blockchain despot, in deciding
whether to decrease or increase β by δ. This is shown in Table 2, where R(m) is
the present value of the future revenue generated by setting the fee multiplier to to
m, and 0 < f < 1 is the fraction of all staked syms owned by the stakeholder in
question.

We see that the rational decision for both a single stakeholder and a perfectly
coordinated “despot” is the same — adjust β in the direction that maximizes R(β).
This is because if we assume uncoordination, moving β in the “right” direction
reduces the expected future distance between β and β̂, regardless of what choices
other might make. Thus, even in a completely uncoordinated world, stakeholders
have an incentive to nudge β towards our desired value β̂.

What about the vast space of situations in between perfect coordination and
perfect uncoordination? We can actually largely ignore it due to the following
observation: stakeholders forming n internally-coordinated coalitions that do not
mutually cooperate is entirely isomorphic to n perfectly uncoordinated individual
stakeholders.

4.3 Emergency responses: slashing and nuking

We’ve now shown that under a wide variety of scenarios, Themelio’s stakeholders
will rationally charge stable and predictable fees, while admitting transactions
in a nondiscriminatory manner, just as a hypothetical blockchain despot would.
However, we left out a very important job of stakeholders that’s surprisingly hard
to incentivize — they need to actually validate transactions and make sure that
valid blocks are produced.

In a perfectly coordinated world, this is easy: producing invalid blocks that
will not be accepted by auditors only serves to halt the network, which is not in
the interest of most stakeholders. Unfortunately, if we assume uncoordination,
validating transactions correctly may not be a dominant strategy.

To see why, let’s look at Table 3. r represents the reward from building a block,
c the cost of checking the whether or not the transactions inside a block are valid,
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Others validate Others don’t

I validate r − c r − c
I don’t r −R

Figure 3: Payoff table for choosing to validate transactions or not

and R the harm to the stakeholder from an invalid blocks being confirmed onto
the network and reducing Themelio’s economic activity.

We note that if the stakeholder thinks that other stakeholders do indeed vali-
date transactions, the rational strategy is in fact to include whatever transaction
the stakeholder comes across, without checking for validity. After all, if most
stakeholders validate, users will have no incentive to send invalid transactions and
invalid transactions will in any case not be propagated within the peer-to-peer
network.

We therefore have a serious coordination failure — in a world where stakehold-
ers all validate transactions, each of them would instead be incentivized to free-ride
on the effort of others and not validate at all. We get the worst of all worlds,
where nobody validates transactions and the entire system collapses. In fact, an
analogue of this “lazy stakeholder” strategy, SPV mining, is already common in the
Bitcoin world, and the only thing preventing it from leading to consensus failure
is, effectively, out-of-band coordination.

To fix this, Themelio contains a mechanism widely used in other proof-of-stake
systems, though usually not motivated explicitly as a way to avoid coordination
failure. This mechanism is slashing, where stakeholders that behave in provably
invalid ways are punished by deleting their entire stake. More precisely,the last
step of our consensus protocol B F T has all stakeholders commit to a particular
block by signing it cryptographically, a process that builds the consensus proof
produced by the protocol. Correctly behaving stakeholders will always commit a
valid block and never “go back” on their collective decision. Thus, we have two
slashing conditions which leave cryptographic proof that a certain stakeholder is
faulty:

• Equivocation, where a stakeholder commits to two different blocks with the
same block height

• Invalid block, where a stakeholder commits to an invalid block

In either of these cases, anybody can submit cryptographic evidence (two
conflicting signatures, or a signature on an invalid block) as a specially-formatted
transaction on the blockchain. This slashing transaction removes the offending
stakeholder, deleting all of the syms associated with the stake. Slashing also reduces
the supply of syms, increasing their value, while also increases the fraction of
rewards that other stakeholders receive. This incentivizes every other stakeholder
to discover and slash “lazy” stakeholders, perhaps to the point of intentionally
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sending them invalid transactions in the hopes of catching and slashing a lazy
validator.

In this way, slashing turns the payoff of “others validate but I don’t” deeply
negative, leading to transaction validation being a dominant strategy even in a
totally uncoordinated setting. We can now also understand the consensus nuking
discussed in 3.3.1, where contradictory consensus proofs propagate through the
auditor network and shut the entire system down, as an extraordinary form of
slashing that punishes lazy or dishonest majorities.

Nuking provides two additional benefits on top of slashing. First, it’s a failsafe
that protects network integrity if stakeholders “irrationally” (for example, due to
a software bug) fail to validate transactions. Secondly, nuking also prevents the
use of a wide range of “despot-compatible” lazy strategies that are nevertheless
undesirable, such as choosing to skip validating “probably okay” transactions to
save costs whenmost clients would not attempt to send invalid transactions. Nuking
makes the consequences of even slightly invalid behavior terrible, preventing these
strategies.

5 Agent-based incentive simulation
In this section, we test Synkletos’s security and stability with a series of experi-
ments. We use a Monte Carlo agent-based simulation similar to [3]. We build a
simplified model of Themelio’s transaction market, including both users wishing to
broadcast transactions and stakeholders building blocks out of transactions. This
then lets us compare the payoffs of different stakeholder strategies under a variety
of environments.

Through this simulation, we demonstrate that a wide family of stakeholder
strategies — we call them standard strategies — converge to despot-simulating
behavior with minimal tips and revenue-maximizing base fees. Furthermore, we
show that a variety of pathological strategies, such as lazy validation or continually
voting down the fee multiplier, can cause gross deviation from despot-simulating be-
havior when they are in the majority, yet stakeholders following standard strategies
receive higher payoffs even when they are in the minority.

Finally, we run simulations on variations of Synkletos, for example by burning
all the base fees as in EIP-1559. We see that Synkletos’ various design choices are
crucial for its stability.

5.1 Simulation model

Our simulation consists of three parts: the world state, the transactions, and the
stakeholders.

World state Time in our simulation is discrete, divided by block heights. The
world state Wt at height t consists of the fee multiplier Wt.m u l t i p l i e r , the fee pool
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Wt.p o o l , and the transaction queueWt.t x q u e u e . The transaction queue represents
transactions that have been submitted to the blockchain but not yet confirmed.

Transactions Every block height, a batch of random transactions are generated
and added to the world state. Each of these transactions T is represented by three
numbers: a number T.w e i g h t proportional to the cost of validating it, it fee T.f e e ,
and T.m a x f e e that represents the highest fee that its sender is willing to bid.
We do not attempt to model invalid transactions or the actual on-chain effects of
transactions.

To generate a transaction T at time t, we first sample a reservation fee level r
from an exponential distribution with mean 1. This represents the highest price
per weight unit that the sender is willing to pay. If r < Wt.m u l t i p l i e r , then even
the base fees are too much for the sender to pay, and the transactions to discarded.
We set the fee to 1% more than required:

T.f e e = Wt.m u l t i p l i e r × T.w e i g h t × 1.01

and we set T.m a x f e e = r × T.w e i g h t .
Furthermore, every time a transaction in the world state’s queue is not accepted

into a block, its fee increases by a random amount between 1% and 50%. If this fee
exceeds its max fee, then the transaction is deleted from the queue. This process
simulates an “auction-like” process that bids up tips when the base fee is set too
low.

Stakeholders Within a single simulation instance there are n stakeholders
S1, . . . , Sn; stakeholders joining and leaving is not modeled. We model the costs
that Si experience with two variables:

• Si.f i x c o s t representing the fixed costs (such as server rent) of running a
stakeholder for 1 block height

• Si.d y n c o s t representing the dynamic costs of processing a transaction. That
is, if a stakeholder confirms a transaction T with weight w, then it must pay
c× Si.d y n c o s t .

Every block height t, a random stakeholder is selected to be the block proposer.
They pick transactions out of Wt.p o o l based on their transaction picking strategy
to confirm. Confirmed transactions’ tips go to the proposer, while their base fees
are added to the fee pool. We name the following standard transaction picking
strategies that generally converge towards good behavior:

• Altruistic picks transactions in the interests of all stakeholders. It accepts a
transaction if and only if its total fees (its long-run benefit to all stakeholders’
revenue) exceeds its total cost to all stakeholders.

• Greedy picks transactions in the interests of the proposer alone. It accepts
a transaction if and only if its benefit to the proposer’s marginal revenue

21



— calculated as tips plus a fraction f of the base fees corresponding to the
proposer’s fraction of the total stake — exceeds the cost to the proposer itself.

as well as the following pathological strategies:

• Lazy never picks any transaction. Proposers following this strategy hope to
“free ride” on the fee pool funded by other proposer’s efforts.

• Monopolist picks up all transactions, hoping to deprive others of revenue.

After the stakeholder is done picking transactions, it uses a fee adjusting strategy
to adjust the fee multiplier by at most 1%. We only define one standard adjusting
strategy:

• HillClimb randomly chooses between increasing the multiplier by 1% or
decreasing it by 1%. If the current multiplier is below the multiplier at which
the stakeholder has seen its highest profits, the probability of increasing is 70%
while that of decreasing is 30%. Otherwise, the probability is reversed. This
gradually moves the fee towards the level most profitable for the stakeholder.

5.2 Standard strategies

We start our experiments by testing our two standard strategies, Greedy and
Altruistic.

Standard strategies converge We first show that both Greedy and Altruistic
converge towards despot-simulating behavior at various levels of collusion. This is
done by running our model for 1000 iterations with different numbers of stakehold-
ers, where all stakeholders use either Greedy or Altruistic to select transactions.
We also initialize all stakeholders with the same fixed cost of 1000 and dynamic
cost of 1 unit.

Figure 4 shows the base fee ratio, or the fraction of fees paid as base fees rather
than tips. A despot will keep this ratio close to 1, meaning that most fees are paid
as base fees, since this gives the same revenue while reducing the number of times
transactions have to be retried to be confirmed.

We see that Altruistic maintains an extremely high base fee ratio close to
1, since in this strategy proposers will not wait for higher tips before confirming
transactions. Greedy still maintains a high ratio of around 0.82-0.84. Furthermore,
this ratio is very collusion-insensitive — it doesn’t substantially change no matter
how many stakeholders participate. Thus, even if all participants follow a short-
sighted greedy algorithm for picking transactions, users can still use a simple
bidding strategy of, say, bidding 30% more than the base fee.

Figure 5 shows the fee multiplier at the end of each simulation. We see that
with both strategies, the fee multiplier ends up within a tight range — the revenue-
maximizing point. This is despite the fact that HillClimb is not very accurate at
finding the revenue-maximizing point, especially when many stakeholders exist,
due to its randomized nature.
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Figure 4: Base fee ratio for standard strategies

Figure 5: Fee multiplier for standard strategies

Greediness doesn’t pay off We now show that in a one-on-one contest, Greedy
receives similar profits to Altruistic. We run a longer, 10000-block simulation,
except this time we have one stakeholder following Altruistic and one stakeholder
following Greedy.

We visualize a typical run of the simulation in Figure 6, which plots the revenue
(averaged over 100 blocks) of both stakeholders, as well as the fee multiplier. We
see that Greedy does not, in fact, gain more revenue than Altruistic. Intuitively,
this is because when a Greedy proposer refuses to accept a transaction, and its tip
is therefore forced upwards, the increased tip actually goes to the next proposer,
who may be following an Altruistic strategy. Thus, Greedy’s efforts to increase
tips ends up being “altruistic”.
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Figure 6: Revenue for Greedy vs Altruistic

5.3 Pathological strategies

We now look at the pathological strategies Lazy and Monopolist, showing that
they always lose against standard strategies

Figure 7: Lazy vs Greedy

Laziness doesn’t pay off We first investigate the case where Lazy faces off head-
to-head against Greedy. We run a 1000-block simulation, varying S.d y n c o s t
between 0 to 2 to represent differing opportunity costs for including a transaction.
The results are shown in Figure 7 We see that at low costs, Greedy is much more
profitable — the profit gained by normally accepting transactions more than offset
their costs. Even at higher costs, Greedy is still marginally better, since Lazy rejects
even transactions that would have been profitable. Thus, a rational stakeholder
would not choose Greedy as a strategy.
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Monopolists fail We now investigate Monopolist, a strategy that picks all trans-
actions, hoping to deny others revenue. We run a simulation analagous to our
previous simulation, and plot the results in 8. We see that Monopolist is a strategy
that’s just as bad. At lower costs, it’s basically equivalent to Greedy, since most
transactions pay more fees than their cost. At higher costs, all Monopolist accom-
plishes is to waste money confirming transactions that pay low fees. Furthermore,
comparing with Fig 7, we see that Monopolist doesn’t accomplish the goal of
reducing Greedy’s revenue at any cost.

Figure 8: Monopolist vs Greedy

5.4 Failure of alternative fee models

Finally, we show that Synkletos’s “cartelizing” feature of collectively setting a base
fee that is then split is crucial to stability, despite it appearing to be unfair and
monopolistic. To do so, we compare our model of Synkletos to an alternative model
where instead of accumulating in the pool, fees are burned. This results in a system
very similar to Ethereum’s proposed EIP-1559 fee economy [5].

We repeatedly run a 1000-block simulation with different numbers of Greedy
stakeholders, comparing the outcome of EIP-1559’s fee economy with that of
Synkletos. Results are plotted in Figure 9. We see that unlike Synkletos, which
produces a stable fee multiplier regardless of the number of stakeholders, EIP-1559
suffers from two instabilities. First, at very low numbers of stakeholders (i.e. high
levels of collusion), it’s no longer in anyone’s interest to correctly vote for the
fee multiplier. Instead, everyone benefits from a low fee mulitplier that causes
most fees to turn into tips. Secondly, at very high numbers HillClimb no longer
converges, since the lack of a fee pool means revenue for stakeholders is extremely
noisy. Most importantly, we see that Synkletos does not charge significantly more
fees than EIP-1559.
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Figure 9: EIP-1995 vs Synkletos

6 Conclusion
In this chapter we described Synkletos, the cryptoeconomic system behind con-
sensus in Themelio’s. We first argued that instead of aiming for some sort of ideal
outcome and trying to design a cryptoeconomic mechanism with just the right in-
centives to produce that outcome, we should aim for “despot simulation” — having
the blockchain function as if controlled by a rational, profit-seeking centralized
entity. This allows us to design a mechanism that, unlike existing blockchain
consensus mechanisms, is extremely resistant to collusion and provides for a much
more user-friendly fee market.

We then validate our results by a stochastic agent-base simulation, showing
that Synkletos reliably simulates a despot at varying levels of collusion, while
resisting adversarial strategies. We also see that non-despot-simulating strategies
like EIP-1559 do not produce stable behavior and can fail catastrophically when
stakeholders collude.
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